
AD-A258 918

AFIT/GE/ENG/92D-32

RADAR CROSS SECTION MODELS FOR

LIMITED ASPECT ANGLE WINDOWS

THESIS

Mark Clayton Robinson
Captain, USAFR

ELECTE
AFIT/GE/ENG/92D-32 JN0719

-aw
So

3an
Approved for public release; distribution unlimited

93 104 157



AFIT/GE/ENG/92D-32

RADAR CROSS SECTION MODELS FOR

LIMITED ASPECT ANGLE WINDOWS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Mark Clayton Robinson, B.S.

Captain, USAFR

December, 1992

Approved for public release; distribution unlimited



Acknowledgements

I thank my thesis advisor, Dr Vittal Pyati for his patience and advice throughout

this project. I also thank coworkers Capt Chaz Daly and Mr. Alan Buterbaugh for making

valuable suggestions. I especially thank my wife Carla and my sons Sean, Dusty, and Kyle

for putting up with me this last year and a half. This thesis is sponsored by the Radar

Target Scattering range (RATSCAT) at Holloman AFB, NM and ESC/YV.

Mark C. Robinson

Aooession For
NTIS GRA&I of
DTIC TAB 0
Unannounced 0
Justtfication

DTIC C I........ Distribution/

Availability Codet
Avail and/or

Dist Speoial.



Table of Contents

Page

Table of Contents ............ .................................. iii

List of Figures ............. .................................... vii

List of Tables ........... ..................................... xii

Abstract ............ ........................................ xiv

I. Introduction ........... ................................ 1-1

1.1 Overview .......... ............................. 1-1

1.2 Problem Statement ........ ........................ 1-1

1.3 Assumptions ......... ........................... 1-2

1.4 Scope .......... ............................... 1-2

1.5 Approach .......... ............................. 1-3

1.6 Sequence of Presentation ........ .................... 1-3

II. Background .......... ................................. 2-1

2.1 Overview .......... ............................. 2-1

2.2 RCS Characteristics ........ ....................... 2-1

2.3 Modeling RCS with Probability Density Functions ...... 2-3

2.4 Parameter Estimation ........ ...................... 2-4

2.5 Goodness-Of-Fit ......... ......................... 2-6

2.6 Radar Detection ......... ......................... 2-8

2.7 Summary ......... ............................. 2-12

Illi.



Page

III. M ethodology ................................ 3-1

3.1 Introduction ......... ........................... 3-1

3.2 Parameter Determination ........ .................... 3-1

3.2.1 Rayleigh ........ ......................... 3-1

3.2.2 Rayleigh Squared ............................ 3-2

3.2.3 One- Dominant- Plus- Rayleigh ...... ............. 3-4

3.2.4 Lognormal ........ ....................... 3-4

3.2.5 Normal ......... ......................... 3-6

3.2.6 Beta .................................... 3-7

3.2.7 Weibull ......... ......................... 3-9

3.3 Data Inputs ..................................... 3-11

3.4 ASPECT Program Operation ......................... 3-12

3.4.1 Step 1: Input Prompts ...... ................. 3-12

3.4.2 Step 2: Generation of Statistics ..... ............ 3-12

3.4.3 Step 3: Parameter Determination ............... 3-13

3.4.4 Step 4: PDF and CDF Plots .................. 3-13

3.4.5 Step 5: Goodness-of-Fit ...... ................ 3-14

3.4.6 Step 6: Optimum Model Determination ........... 3-15

3.5 Summary ......... ............................. 3-15

IV. Determination of Optimum RCS Models for Window vs. Full-

Range Sample Sets ......... ............................ 4-1

4.1 Introduction ......... ........................... 4-1

4.2 Parameter Types ................................. 4-1

4.2.1 Normal ......... ......................... 4-2

4.2.2 Lognormal ........ ....................... 4-3

4.2.3 Weibull ......... ......................... 4-3

4.2.4 Beta .................................... 4-3

iv



Page

4.2.5 Rayleigh Class ........ ..................... 4-5

4.3 Test Results for Window vs. Full-Range RCS Models . . . 4-5

4.3.1 Nose-On Fighter: 8 = 900 .... ............... .... 4-6

4.3.2 Nose-On Fighter: 0 = 90--50. .............. ... 4-7

4.3.3 Nose-On Missile: 0 = 900 ......... ............... 4-8

4.3.4 Broadside Fighter: 0 = 90. .................... 4-15

4.3.5 Broadside Fighter: 0 = 900 ± 50 ........... 4-15

4.3.6 Broadside Missile: 0 = 900 ................... .... 4-15

4.3.7 Tail-On Fighter: 0 = 900 .................... ..... 4-22

4.3.8 Tail-On Fighter: 0 = 900 ± 50 ............. 4-22

4.3.9 Tail-On Missile: 0 = 900 ...................... 4-22

4.4 Summary of Window vs. Full-Range RCS Models .......... 4-23

V. Determination of Optimum Model for Window vs. Window

Comparisons .......... ................................ 5-1

5.1 Introduction ......... ........................... 5-1

5.2 Test Results for Window vs. Window RCS Models ...... 5-1

5.2.1 Nose-On Fighter:B = 90* ...................... 5-1

5.2.2 Nose-On Fighter: 0 - 900 ± 50 ............ 5-2

5.2.3 Nose-On Missile: 0 - 900 .................. .... 5-2

5.2.4 Broadside Fighter: 0 = 900 ................. ... 5-9

5.2.5 Broadside Fighter: 0 = 900 ± 50 ........... 5-9

5.2.6 Broadside Missile: 0 = 900 .................. .... 5-9

5.2.7 Tail-On Fighter: 0 = 900 .................... ..... 5-15

5.2.8 Tail-On Fighter: 0 = 900 ± 50 ............. 5-15

5.2.9 Tail-On Missile: 0 = 900 .................... .... 5-16

5.3 Analysis of Window vs. Window RCS Models ............. 5-16

5.3.1 PDF Performance ....... ................... 5-16

V



Page

5.3.2 Parameter Estimation ....................... 5-18

5.3.3 Sample Set Behaviour ....................... 5-18

5.4 Summary ......... ............................. 5-18

VI. Conclusions and Recommendations ......................... 6-1

6.0.1 Conclusions ........ ....................... 6-1

6.0.2 Recommendations ....... ................... 6-1

Appendix A. Test Statistics and Levels of Significance ................ A-i

Appendix B. ASPECT RCS Modeling Program ..................... B-1

Bibliography .......... ..................................... BIB- 1

vi



List of Figures

Figure Page

2.1. Neyman-Pearson Decision Test ........ ....................... 2-9

4.1. Normal pdf's response to changes in p and o ..................... 4-2

4.2. Lognormal pdf's response to changes in pA and a ...... ............. 4-4

4.3. Weibull pdf's response to changes in a and 0 ............... .. 4-4

4.4. Beta pdf's response to changes in a and # ....... ................ 4-5

4.5. Rayleigh pdf's response to changes in a ....... .................. 4-6

4.6. Top KGFT and CGFT CDF of Fighter Data at Nose-On ±5°, 0.50 sample

interval, -= 900, 0 - 9 polarization, 1 GHz Full-Scale ............... 4-9

4.7. Top KGFT and CGFT PDF of Fighter Data at Nose-On ±5°, 0.50 sample

interval, 9 = 900, 9 - 0 polarization, 1 GHz Full-Scale ............... 4-9

4.8. Top CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

0 = 90*, 0 - 9 polarization, 1 GHz Full-Scale ..................... 4-10

4.9. Top CGFT PDF of Fighter Data at Nose-On ±50, 0.5* sample interval,

0 9 900, 9 - 0 polarization, 1 GHz Full-Scale ...... ............... 4-10

4.10. Top KGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

9 = 90° ± 5°, 0 - 0 polarization, 1 GHz Full-Scale ................. 4-11

4.11. Top KGFT PDF of Fighter Data at Nose-On ±5°, 0.5* sample interval,

0 = 900 ± 50, 9 - 9 polarization, 1 GHz Full-Scale ..... ............ 4-11

4.12. Top CGFT CDF of Fighter Data at Nose-On ±5*, 0.50 sample interval,

9 = 90° ± 50, 9 - 9 polarization, 1 GHz Full-Scale ..... ............ 4-12

4.13. Top CGFT PDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

9 = 900 ± 50, 9 - 0 polarization, 1 GHz Full-Scale ................. 4-12

4.14. Top KGFT and CGFT CDF of Missile Data at Nose-On ±50, 0.50 sample

interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale ..... ......... 4-13

4.15. Top KGFT and CGFT PDF of Missile Data at Nose-On ±50, 0.50 sample

interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale ..... ......... 4-13

vii



Figure Page

4.16. Top CGFT CDF of Missile Data at Nose-On +5°, 0.50 sample interval,

0 = 90°, 0 - 0 polarization, 18 GHz Full-Scale ...... .............. 4-14

4.17. Top CGFT PDF of Missile Data at Nose-On +50, 0.50 sample interval,

0 = 90*, 9 - 0 polarization, 18 GHz Full-Scale ...... .............. 4-14

4.18. Top KGFT and CGFT CDF of Fighter Data at Broadside +50, 0.50 sam-

ple interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale ............ 4-17

4.19. Top KGFT and CGFT PDF of Fighter Data at Broadside +50, 0.50 sam-

ple interval, 9 = 90°, 0 - 9 polarization, 1 GHz Full-Scale ............ 4-17

4.20. Top CGFT CDF of Fighter Data at Broadside +5', 0.50 sample interval,

0 = 90°, 9 - 9 polarization, 1 GHz Full-Scale ...... ............... 4-18

4.21. Top CGFT PDF of Fighter Data at Broadside ±5', 0.50 sample interval,

0 = 90", 9 - 0 polarization, 1 GHz Full-Scale ...... ............... 4-18

4.22. Top KGFT and CGFT CDF of Fighter Data at Nose-On +5°, 0.50 sample

interval, 0 = 90* + 50, 0 - 9 polarization, 1 GHz Full-Scale ........... 4-19

4.23. Top KGFT and CGFT PDF of Fighter Data at Nose-On +50, 0.5* sample

interval, 9 = 90* + 50, 9 - 0 polarization, 1 GHz Full-Scale ....... ..... 4-19

4.24. Top KGFT and CGFT CDF of Missile Data at Broadside +50, 0.50 sample

interval, 0 = 900, 9 - 9 polarization, 18 GHz Full-Scale ..... ......... 4-20

4.25. Top KGFT and CGFT PDF of Missile Data at Broadside +50, 0.50 sample

inte val, 9 = 900, 9 - 9 polarization, 18 GHz Full-Scale ..... ......... 4-20

4.26. Top CGFT CDF of Missile Data at Broadside +50, 0.50 sample interval,

0 = 90°, 9 - 9 polarization, 18 GHz Full-Scale ...... .............. 4-21

4.27. Top CGFT PDF of Missile Data at Broadside +5*, 0.50 sample interval,

0 = 90°, 0 - 0 polarization, 18 GHz Full-Scale ...... .............. 4-21

4.28. Top KGFT and CGFT CDF of Fighter Data at Tail-On +5°, 0.50 sample

interval, 0 = 900, 0 - 9 polarization, 1 GHz Full-Scale ............... 4-25

4.29. Top KGFT and CGFT PDF of Fighter Data at Tail-On +5°, 0.50 sample

interval, 0 = 90", 0 - 9 polarization, 1 GHz Full-Scale ............... 4-25

4.30. Top CGFT CDF of Fighter Data at Tail-On +5°, 0.50 sample interval,

9 = 90", 9 - 9 polarization, 1 GHz Full-Scale ...... ............... 4-26

viii



Figure Page

4.31. Top CGFT PDF of Fighter Data at Tail-On ±50, 0.50 sample interval,

9 = 90", 9 - 0 polarization, 1 GHz Full-Scale ...... ............... 4-26

4.32. Top KGFT CDF of Fighter Data at Tail-On ±5*, 0.5* sample interval,

0 = 90* ± 50, 9 - 0 polarization, 1 GHz Full-Scale ..... ............ 4-27

4.33. Top KGFT PDF of Fighter Data at Tail-On ±5', 0.5* sample interval,

O = 900 ± 50, 0 - 9 polarization, 1 GHz Full-Scale ..... ............ 4-27

4.34. Top CGFT CDF of Fighter Data at Tail-On ±50, 0.5* sample interval,

0 = 90* ± 50, 9 - 0 polarization, 1 GHz Full-Scale ..... ............ 4-28

4.35. Top CGFT PDF of Fighter Data at Tail-On ±5', 0.50 sample interval,

9 = 90° ± 5*, 0 - 0 polarization, 1 GHz Full-Scale ..... ............ 4-28

4.36. Top KGFT and CGFT CDF of Missile Data at Tail-On -5*, 0.50 sample

interval, 9 = 90", 9 - 0 polarization, 18 GHz Full-Scale ..... ......... 4-29

4.37. Top KGFT and CGFT PDF of Missile Data at Tail-On ±5*, 0.50 sample

interval, 0 = 900, 9 - 0 polarization, 18 GHz Full-Scale ..... ......... 4-29

4.38. Top CGFT CDF of Missile Data at Tail-On ±50, 0.5* sample interval,

0 = 90*, 0 - 9 polarization, 18 GHz Full-Scale ...... .............. 4-30

4.39. Top CGFT PDF of Missile Data at Tail-On ±5*, 0.50 sample interval,

0 = 90°, 0 - 9 polarization, 18 GHz Full-Scale ...... .............. 4-30

5.1. Top KGFT CDF of Fighter Data at Nose-On -5*, 0.50 sample interval,

0 = 90*, 0 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-4

5.2. Top KGFT PDF of Fighter Data at Nose-On +50, 0.50 sample interval,

0 = 90*, 0 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-4

5.3. Top CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

9 = 90°, 9 - 9 polarization, 1 GHz Full-Scale ...... ............... 5-5

5.4. Top CGFT PDF of Fighter Data at Nose-On ±50, 0.5* sample interval,

0 = 900, 9 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-5

5.5. Top KGFT CDF of Fighter Data at Nose-On +50, 0.50 sample interval,

0 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale ...... ............ 5-6

5.6. Top KGFT PDF of Fighter Data at Nose-On ±50, 0.5* sample interval,

0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale ...... ............ 5-6

ix



Figure Page

5.7. Top CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale ...... ............ 5-7

5.8. Top CGFT PDF of Fighter Data at Nose-On ±50, 0.50 sample interval,

0 = 900 ± 50, 9 - 0 polarization, 1 GHz Full-Scale ...... ............ 5-7

5.9. Top KGFT and CDFT CDF of Missile Data at Nose-On ±50, 0.50 sample

interval, 9 = 900, 0 - 0 polarization, 18 GHz Full-Scale ..... ......... 5-8

5.10. Top KGFT and CGFT PDF of Missile Data at Nose-On ±50, 0.50 sample

interval, 9 = 900, 0 - 0 polarization, 18 GHz Full-Scale ..... ......... 5-8

5.11. Top KGFT CDF of Fighter Data at Broadside ±50, 0.50 sample interval,

9 = 900, 0 - 0 polarizatio-n, 1 GHz Full-Scale ...... ............... 5-11

5.12. Top KGFT PDF of Fighter Data at Broadside ±50, 0.50 sample interval,
9 = 900, 9 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-11

5.13. Top CGFT CDF of Fighter Data at Broadside ±50, 0.5' sample interval,
0 = 900, 9 - 9 polarization, 1 GHz Full-Scale ...... ............... 5-12

5.14. Top CGFT PDF of Fighter Data at Broadside ±50, 0.50 sample interval,
S= 909, 0 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-12

5.15. Top KGFT and CGFT CDF of Fighter Data at Broadside ±50, 0.5° sam-

ple interval, 0 = 990 ± 50, 0 - 9 polarization, 1 GHz Full-Scale ..... ... 5-13

5.16. Top KGFT and CGFT PDF of Fighter Data at Broadside ±50, 0.50 sam-

ple interval, 0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale ...... 5-13

5.17. Top KGFT and CGFT CDF of Missile Data at Broadside ±50, 0.50 sample

interval, 0 = 90', 0 - 9 polarization, IC GHz Full-Scale ..... ......... 5-14

5.18. Top KGFT and CGFT PDF of Missile Data at Broadside ±50, 0.50 sample

interval, 9 = 90*, 9 - 9 polarization, 18 GHz Full-Scale ..... ......... 5-14

5.19. Top KGFT and CGFT CDF of Fighter Data at Tail-On ±50, 0.50 sample

interval, 0 = 90°, 0 - 9 polarization, 1 GHz Full-Scale ............... 5-19

5.20. Top KGFT and CGFT PDF of Fighter Data at Tail-On ±50, 0.50 sample

interval, 0 = 900, 9 - 0 polarization, 1 GHz Full-Scale ............... 5-19

5.21. Top CGFT CDF of Fighter Data at Tail-On ±50, 0.50 sample interval,
0 = 900, 0 - 0 polarization, 1 GHz Full-Scale ...... ............... 5-20

x



Figure Page

5.22. Top CGFT PDF of Fighter Data at Tail-On ±5°, 0.50 sample interval,

0 = 900, 0 - 6 polarization, 1 GHz Full-Scale ...... .............. 5-20

5.23. Top KGFT CDF of Fighter Data at Tail-On +50, 0.50 sample interval,

0 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale ........... .. .... 5-21

5.24. Top KGFT PDF of Fighter Data at Tail-On +50, 0.50 sample interval,

0 = 90" ± 5', 6 - 0 polarization, 1 GHz Full-Scale ................. 5-21

5.25. Top rGFT CDF of Fighter Data at Tail-On 45*, 0.5* sample interval,

0 = 90° ± 50, 0 - 6 polarization, 1 GHz Full-Scale ................. 5-22

5.26. Top CGFT PDF of Fighter Data at Tail-On ±5', 0.5" sample interval,

0 = 90' ± 5', 9 - 0 polarization, i GHz Full-Scale ................. 5-22

5.27. Top KGFT and CGFT CDF of Missile Data at Tail-On ±50, 0.50 sample

interval, 6 = 90', 6 - 0 polarization, 18 GHz Full-Scale ..... ......... 5-23

5.28. Top KGFT and CGFT PDF of Missile Data at Tail-On +5°, 0.50 sa iple

interval, 9 = 900, 9 - 0 poiaiization, 18 GHz Full-Scale ..... ......... 5-23

xi



List of Tables

Table Page

2.1. Probability Density Functions ........ ....................... 2-4

A.1. Fighter: 0 = 900 Kolmogorov Levels of Significance for Window vs. Full-

Range, n=number of samples, T1=Test Statistic, Wp=l-a Quantile . . A-2

A.2. Fighter: 0 = 900 Chi-Square Levels of Significance for Window vs. Full-

Range, n=number of samples, DoF= Degrees of Freedom, T1 =Test Statis-

tic, Wp=l-a Quantile ......... ............................ A-3

A.3. Missile: 0 = 900 Kolmogorov Levels of Significance for Window vs. Full-

Range, n=number of samples, T1 =Test Statistic, Wp=l-a Quantile . . A-4

A.4. Missile: 0 = 900 Chi-Square Levels of Significance for Window vs. Full-

Range, n=number of samples, DoF= Degrees of Freedom, T1=Test Statis-

tic, Wp=1-a Quantile ......... ............................ A-5

A.5. Fighter: 0 = 900 ± 50 Kolmogorov Levels of Significance for Window vs.

Full-Range, n=number of samples, T1=Test Statistic, Wp=l-a Quantile A-6

A.6. Fighter: 0 = 90* ± 5* Chi-Square Levels of Significance for Window vs.

Full-Range, n=number of samples, DoF= Degrees of Freedom, T1=Test

Statistic, Wp=l-a Quantile ......... ......................... A-7

A.7. Fighter: 0 = 90* Kolmogorov Levels of Significance for Window vs. Win-

dow, n=number of samples, T1=Test Statistic, Wp=l-a Quantile . . . . A-8

A.8. Fighter: 0 = 90* Chi-Square Levels of Significance for Window vs. Win-

dow, n=number of samples, DoF= Degrees of Freedom, T 1 =Test Statistic,

Wp=-1-a Quantile .......... .............................. A-9

A.9. Missile: 0 = 90* Kolmogorov Levels of Significance for Window vs. Win-

dow, n=number of samples, T1=Test Statistic, Wp=l-a Quantile . . . . A-10

A.10.Missile: 0 = 90* Chi-Square Levels of Significance for Window vs. Win-

dow, n=number of samples, DoF= Degrees of Freedom, T1 =Test Statistic,

Wp=l-a Quantile ......... .............................. A-11

A.11.Fighter: 0 = 90* ± 5* Kolmogorov Levels of Significance for Window vs.

Window, n=number of samples, T1=Test Statistic, Wp= 1-a Quantile A-12

xii



Table Page

A.12.Fighter: 0 = 900 ± 50 Chi-Square Levels of Significance for Window

vs. Window, n=number of samples, DoF= Degrees of Freedom, T1=Test

Statistic, W==l-a Quantile ........ ......................... A-13

xiii



AFIT/GE/ENG/92D-32

Abstract

This thesis presents a method for building static Radar Cross Section (RCS) models

of aircraft based on static data taken from limited aspect angle windows. These models

statistically characterize static RCS. This is done to show that a limited number of samples

can be used to effectively characterize static aircraft RCS.

The aspect angles that the data are taken from are nose-on (0+±5°), broadside

(90°±50), and tail-on (1800±50). These aspects are chosen because they have the greatest

probability of being presented to the point defense radar. However, any aspect angle with

any window size can be modeled with the method presented here.

The optimum models are determined by performing both a Kolmogorov and a Chi-

Square goodness-of-fit test comparing the static RCS data with a variety of probability

density functions (pdf) that are known to be effective at approximating the static RCS of

aircraft. The optimum parameter estimator is also determined by the goodness-of-fit tests

if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator

(MLE) and the Method of Moments (MoM) estimators. If solving for the MLE results in

transcendental equations, numerical methods are used to obtain the parameter estimate.

xiv



RADAR CROSS SECTION MODELS FOR

LIMITED ASPECT ANGLE WINDOWS

L Introduction

1.1 Overview

In the problem of detection of aircraft by a radar, statistical models of the radar

cross section (RCS) are necessary (Skolnick, 1980:46). The models must take into account

the high rate of RCS fluctuation and the large magnitude of the fluctuations that complex

shapes, such as aircraft, exhibit as a function of aspect angle. The fluctuating characteristic

of RCS can be treated as a random variable and therefore, probabilty density fuctions (pdf)

can be used to model aircraft RCS (Dowdy, 1991:164). The parameters of the pdfs can be

estimated using either measured RCS data from the aircraft itself or theoretical RCS data

generated from the electromagnetic reflections of combinations of simp'e point scatterers

(Maffett, 1989:239).

A high rate of amplitude fluctuations requires a correspondingly high sampling rate

to model lobe pattern. The Radar Target Scattering range (RATSCAT, Holloman AFB,

NM), an Air Force organization responsible for measuring the RCS of aircraft, and the

sponsor of this research, is currently required to sample the RCS of static aircraft every

0.10 to meet characterization requirements. RATSCAT would like to determine if the total

number of samples can be reduced without affecting the characterization. This thesis will

show that good RCS models can be built from limited aspect windows, thus drastically

reducing the total number of data samples required.

1.2 Problem Statement

The goals of this thesis are to derive a method for building RCS models using a

minimum number of data samples and to determine if there is a consistently superior

method of parameter estimation for the models. Minimizing the value of the test statistic

1-1



in goodness-of-fit tests, for both parameter estimators of pdfs and the pdfs themselves,

should result in acceptable RCS models.

1.3 Assumptions

1. The aircraft RCS data used is from a scale model of a jet fighter, coated with

metallic paint. It is assumed that the aircraft is completely symmetrical, so only 1800 (one

side) of the aircraft is sampled. The missile RCS data is obtained from an actual AIM-9

missile. However, measurement errors distorted the amplitude of one side of the missile

relative to the other side.

2. The sampling intervals are assumed to be adequate for RATSCAT standards. The

aircraft data is sampled at 0.50 intervals, the missile is sampled at 0.25* intervals.

3. The Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM)

are the two most effective parameter estimators.

4. The aircraft and missile data are representative of their class of object. Data from

more than one type of jet fighter or missile would be helpful in validating the effectiveness

of the results, but were unavailable.

1.4 Scope

This study will investigate the sampling requirements for building a static RCS

model. No account of dynamic properties effecting RCS such as wing flutter, pitch and

roll, or atmospheric conditions will be taken into account.

The parameters will be estimated using the Maximum Likelihood Estimator and the

Method of Moments.

The study will consider two types of targets: a jet fighter aircraft and an air-to-air

missile. This will be done to compare the statistical characteristics of the two types of

targets.

1-2



1.5 Approach

A computer program will form the pdfs using RCS data. The program will compute

the MoM and MLE parameters. Theoretical values for MoM and MLE parameters will be

determined in Chapter III.

The program will also determine the test statistics for the Kolmogorov and Chi-

Square goodness-of-fit tests. Tables are then used to determine the Level of Significance

for the parameter estimates, pdfs, and data sets.

Trends in success of types of pdfs and parameter estimators in relation to sample

statistics will be analyzed in Chapters IV and V.

1.6 Sequence of Presentation

Chapter II presents background material related to the thesis topic. The chapter

also provides support for some of the limitations stated here.

Chapter III outlines the methodology used and specific assumptions implicit in com-

putations required to determine best fit.

Chapter IV provides analysis of RCS models built from limited aspect window versus

full-range sample sets.

Chapter V provides analysis of RCS models built from limited aspect window versus

limited aspect window sample sets.

Chapter VI presents conclusions drawn from the study and recommends topics for

further study.
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IL Background

2.1 Overview

This chapter provides a background of radar and statistical concepts used in the

topic development in the following chapters.

The radar range equation is the primary means of evaluating radar performance

based on the power of the transmitted signal, the gain of the antenna, the wavelength of

the transmitted signal, the power of the received signal, and the radar cross section (RCS)

of the target. Of all the parameters of the radar range equation, the RCS is the most

difficult to specify because it is constantly fluctuating in a random manner. RCS depends

upon the size and surface of the target, aspect angle of the target to the radar, motion of

the target relative to the radar, frequency of the transmitted signal, and so on (Skolnik,

1980:41).

A radar system can detect and classify an unknown target by comparing character-

istics of the received signal with a dictionary of optimized statistical models of various

types of targets. The statistical models are developed from RCS data of static models of

the aircraft. Statistical characteristics of the data are used to estimate the parameters of

probability density functions (pdf).

This chapter will review RCS characteristics, types of probability density functions

used to make RCS models, methods of parameter estimation, goodness-of-fit tests, and

radar detection techniques.

2.2 RCS Characteristics

When an electromagnetic wave travelling through one medium strikes the surface of

a second medium, a portion of the energy of the wave is refracted into the second medium,

and the rest of the energy is reflected back into the first medium. The amount of energy

that is enters each medium depends on two variables: the angle of incidence the wave has

with the tangent line of the point of incidence on the second medium and the impedance of

the two mediums. Snell's law of reflection states that the angle of reflection from the line
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perpendicular to the tangent of the point of incidence equals the angle of incidence to the

tangent. However, the angle of reflection refers to the opposite side of the perpendicular line

from the angle of incidence. Therefore, the only time energy will be reflected back toward

the origin of the wave (the radar) will be if it strikes the second medium perpendicularly.

This reflected energy would be the signal a monostatic (one antenna) radar would receive.

For a perpendicular wave, the magnitude of the reflected electrical field is

E, (Z 2 - ZI)E, (2.1)
Z2 + Z1

where Er is the reflected electromagnetic field, Ei is the incident electromagnetic field, Z2

is the impedance of the second medium, and Z1 is the impedance of the first medium. A

negative value indicates a wave travelling toward the origin of the incident wave (Kraus:

1984, Ch. 10 and 12). For a radar signal, the first medium is air and the second medium

is the target (aircraft). Most aircraft have a metallic (low impedance) skin. Air has a high

impedance. Therefore, most of the electromagnetic wave is reflected away from the aircraft.

Link states that "the Radar Cross Section (RCS) of a target, simply put, is a measure of

the electromagnetic energy reflected from the target divided by the electromagnetic energy

incident upon the target" (Link, 1983:1-1). A complex target, such as an aircraft, has a

variety of surface types. An electromagnetic wave incident upon it will be scattered in

many directions. Some portion of the scattering surfaces will reflect the wave back toward

the radar. The variety of types of surfaces and distances from the radar of the individual

scattering surfaces will cause the reflected waves to possess different phases and amplitudes.

Skolnik states

The relative phases and amplitudes of the echo signals from the individual
scattering objects as measured at the radar receiver determine the total cross
section. The phases and amplitudes of the individual signals might add to give
a large total cross section, or the relationships with one another might result
in total cancellation (Skolnik, 1980:38).

The interaction of the multiple scattering surfaces causes the phase of the received

signal to fluctuate much more rapidly than the magnitude, as aspect angle is changed
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(Knott, et al., 1985:180). For this reason, the phase of the received signal is usually

modeled as a random variable having a uniform pdf over the interval [0, 21r] (Crispin and

Seigel, 1968:395), (Maffett, 1989:218), though this is not always the case (Sandhu and

Saylor, 1984:490-507). Assuming a uniform phase distribution and independent scattering

surfaces, each surface's phase may be averaged over individually. RCS fluctuates at a

slower rate, but it is still practical to treat it as a random variable (Skolnik, 1980:46).

2.3 Modeling RCS with Probability Density Functions

Certain types of pdfs have been found that do a good job of modeling the RCS.

The most popular pdfs are Rayleigh functions Swerling used in his four fluctuation models

(Swerling, 1960:268-308). One pdf modeled a complex target consisting of many indepen-

dent scatterers of approximately equal echoing areas:

p(xl a) = 2exp( 2 (2.2)

x > 0, (2.3)

where x is the RCS and a is a parameter that will be estimated from the RCS statistics.

The other pdf modeled one large reflector together with other small reflectors and is named

the One- Dominant-Plus- Rayleigh:

9x3  -3x 2

P(Xla) = 2X3exp(- 3X2  (2.4)

x > 0. (2.5)

(DiFranco and Rubin, 1980:Ch. 11). These pdfs are modifications of the chi-square density

function of degree of freedom 2 and 4 respectively.

Other pdfs that have been found to exhibit good fit to experimental data are the

Beta, Lognormal, Normal, Rayleigh Squared, and Weibull (Maffet, 1989:255), (Dowdy,

1991:165) and are listed in Table 2.1. In this table, x is RCS, y is RCS squared, and a, i,

,u, and a are parameters which are estimated from the RCS statistics.
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Name PDF Range
Beta p(xIa,15) = r+•xa-1(1 _ x)0-1 O<x<l

a,/3 > 0
Lognormal p(xIa,o,)- 1 exp[-, '-) a > 0

(vao(2,,)i

Normal p(xIa, 1) = --- exp0•--X -007a ,( 2 , ,) T 2.. 7 2 • o ~ x

Rayleigh Squared p(yla) = exp( =I) y 0

Weibull p(xIa,1 ) = ao3-xO-1 exp(')a x > 0
______________________________ a,/3_>_0

Table 2.1. Probability Density Functions

2.4 Parameter Estimation

To optimize the fit of pdfs to the data, the parameters of the pdfs must be optimized.

The job of a parameter estimator is to estimate 6 (the parameter of the pdf) by determining

0 (the parameter of the observed data). Two of the most common methods used to estimate

parameters are the Method of Moments (MoM) and the Maximum Likelihood Estimator

(MLE). The MLE method declares 0 to be the values of 8 that gives the likelihood function

p(•i 6) its maximum value. This is done by taking the first derivative of the likelihood

function and setting it equal to zero:

OP ) = 0, (2.6)

and solving for # (Cramer, 1946:499). The second derivative should be examined to deter-

mine whether 0 is actually a maximum or a minimum. Cramer states

The importance of the method is clearly shown by the two following proposi-
tions:

If an efficient estimate 6 of 0 exists, the likelihood equation will have a unique
solution equal to 0.

If a sufficient estimate 6 of 0 exists, any solution of the likelihood equation will
be a function of O(Cramer, 1946:499).
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An efficient estimate is an unbiased estimate that satisfies the following equation:

lnp(x) k(O- 0) (2.7)

where k is a non-zero function of 6. A sufficient estimate is an unbiased estimate that

satisfies the following equation:
Olnp(xIO) -o

_____)= 0. (2.8)

Since the maximum of lnp(zl0) occurs for the same value of 0 as the maximum of p(xIl),

the 0
MLE will be an efficient and sufficient estimator of 0 if 0 MLE is unbiased. An estimator

is unbiased if the expected value of 0 is 0:

E(O) = 0. (2.9)

Law and Kelton list these desirable statistical properties of MLEs:

1. For most of the common distributions, the MLE is unique; that is, L(1)
is strictly greater than L(,3) for any other value of / (L(O) is the likelihood
function of/3).

2. Although MLEs need not be unbiased, in general, the asymptotic distribu-
tion (as n --* oc) of 0 has mean equal to 0 (see property 4 below).

3. MLEs are invariant; i.e., if q0 = h(d) for some function h, then the MLE
of 4 is h(i). (Unbiasedness is not invariant). For example, the variance of an
exp(p) random variable is 32, so that the MLE of this variance is [.(n)]2 .

4. MLEs are asymptotically normally distributed; i.e., vAn(0- 0) -_ N(O, v(O)),
where v(O) = -__2 (the expectation is with respect to xi, assuming that xi

has the hypothesized distribution) and + denotes convergence in distribution.
Furthermore if 0 is any other estimator snch that fn_(i - 0) -_ N(O, a2 ), then
v(O) < a . (Thus, MLEs are called best asymptotically normal.)

5. MLEs are strongly consistent; that is, linin 0 = 0 (with probability of
1)(Law and Kelton, 1982:191).

The Method of Moments determines 0i by determining the first i moments of the

density function (pi) and equating each of those moments to the corresponding sample
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moments (mi) of the data. n multiple parameters can be determined by solving n equations

simultaneously. The MoM is widely used mainly because it is easy to impliment. However,

it was shown by Fisher that the asymptotic efficiency of the MoM is not very good (Fisher,

1921:309). This would indicate that the MoM does not generally give parameters with

the smallest possible variance from the true parameters (Cramer, 1946:490). The superior

efficiency of the MLE would tend to indicate that the MLE should be chosen over the

MoM as an estimator if possible. However, for pdfs with multiple parameters, the MLE

often results in transcendental equations, in which case numerical methods must be used to

determine the parameters. The MoM can then be used as the initial value of an iteration

process (Shenton and Bowman, 1977:162). Also, if the MLE parameters are arrived at

numerically, depending on the procedure, the arrived at parameters may not have an

efficiency as high as the actual MLE estimate. The MoM by itself may then give a better

estimate. Finally, there are many pdfs for which the MoM and the MLE give an identical

value of 0.

2.5 Goodness-Of-Fit

In the last section, parameter variance was mentioned as a tool for determining, a

priori, what method of parameter estimation to use to fit a pdf to the observed data. To

determine if the observed data really could have been obtained by sampling from the fitted

pdf, a goodness-of-fit test is used. This test shows how well a fitted pdf fits the observed

data (Lewis and Orav, 1989:140). A goodness-of-fit test works by performing a hypothesis

test on the pdf with a null hypothesis of:

H0 : The xi's are independent identically distributed (IID) random variables
with distribution function F.

The test then finds a test statistic by making some type of comparison between the fitted

distribution and the observed data. The test statistic is compared with a range of possible

values of the test statistic for a given number of samples. Where the actual test statistic

falls in the range determines the level of significance a, which is the maximum probability

of rejecting the null hypothesis. Therefore, a higher value of a corresponds to a better cor-
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relation between the data and the distribution. There are no set rules for determining what

an appropriate Level of Significance is, but a commonly accepted figure is 5% (Otnes and

Enochson, 1978:61), (Conover, 1980:Chapters 4 and 5), (Law and Kelton, 1982: Chapter

5).

The two most commonly used goodness-of-fit tests are the Chi-Square and the Kol-

mogorov tests. The Chi-Square test groups the ordered data into frequency histograms.

The test statistic is given by

nf (0, _ E,)2
T i=1 Ei (2.10)

where Oi is the actual number of observations in bin i and E, is the expected number of

observations. Although the optimum number of histogram intervals has not been deter-

mined, Law and Kelton recommend that the probability of an observation occurring in an

interval should be as close to identical as possible for all intervals. This is done to make

the test unbiased. They also recommend that the expected number of observations Ei be

greater than or equal to 5, so that the agreement between the true distribution of T and

its asymptotic Chi-Square distribution will not be too small. This is desirable because, if

the null hypothesis is true, T converges with the Chi-Square distribution as n --+ oo. The

Chi-Square test's chief asset is its applicability to any type of distribution function (Law

and Kelton, 1982:197).

The Kolmogorov goodness-of-fit test is the appropriate name of the Kolmogorov-

Smirnov goodness-of-fit test when it is applied to comparisons between distributions and

observed data. The test statistic is the maximum vertical distance between the observed

data and the hypothesized distribution:

T = supIF(x) - S(x)I, (2.11)

where F(x) is the hypothesized distribution, S(x) is the empirical distributiorn of the

observed data, and sup, indicates the supremum over all x (Conover, 1980:296). The chief

advantage of the Kolmogorov test over the Chi-Square test is that it gives exact answers

regardless of the sample size, while the Chi-Square test only asymptotically approaches
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exactness as thn number of samples approaches infinity. Therefore, the Kolmogorov test

is particularly useful for small sample sets (Conover, 1980:296).

Unfortlnately, Law and Kelton state that the Kolmogorov goodness-of-fit test is

in general, only applicable to hypothesized distributions whose parameters are determined

independently of the observed data. One notable exception is the Weibull distribution

function (Law and Kelton, 1982:202). However, Law and Kelton further state, "the ef-

fect of this misapplication (using the Kolmogorov test for a distribution with parameters

estimated from data) is not well understood" (Law and Kelton, 1982:199). In addition,

Breiman states

The effect that this has on the level of the test is not well known. The evidence
we have is that the effect is not very important. For moderate to large sample
size, it is probably safe to ingore the fact that 0 was estimated (Breiman,
1973:213).

There are also many examples of the Kolmogorov test being applied to distributions with

estimated parameters (Dowdy, 1991:164), (Maffett, 1989:Ch.12). Because the test is valid

for the Weibull distribution and evidently does not cause big problems for other distribu-

tions, the results of the Kolmogorov test will be determined along with the Chi-Square

test in this study.

2.6 Radar Detection

This section demonstrates how RCS models using pdfs are used in radar detection

determination. Radar detection is an application of statistical decision theory. DiFranco

and Rubin state

The basic elements of a statistical decision problem are: (1) a set of hypotheses
that characterize the possible true states of nature; (2) a test in which data
are obtained from which we wish to infer the truth; (3) a decision rule that
operates on the data to decide in an optimal fashion which hypothesis in fact
best describes the true state of nature; (4) a criterion of optimality that reflects
the cost of correct and incorrect decisions.
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pO(y) -
p1(y) -

0 yO
y

Figure 2.1. Neyman-Pearson Decision Test

(Di Franco and Rubin, 1980:253). For a radar detection problem, the hypotheses are usually

H0  Noise only present

H1  Signal plus noise is present

There could be further hypotheses if a distinction is to be made over the type of signal

present.

The test used to determine which hypothesis is true is called the Likelihood Ratio

Test. In this test, a likelihood ratio is formed by the pdfs of the two hypotheses and is

compared with a threshold. If the ratio is larger than the threshold, the hypothesis whose

pdf formed the numerator of the ratio is declared to be true. If the ratio is less than the

threshold, the other hypothesis is declared to be true (Melsa, 1978:25).

There are a variety of methods to determine what the threshold should be. For

radar applications, the Neyman-Pearson Test is usually used. This test chooses a value

that maximizes the probability of detection Pd, for a given probability of false alarm Pf a

(Maffett, 1989:275). This method can be understood by examining Figure 1. Assume pl(y)
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is the pdf of a signal present plus noise. Assume Po(Y) is the pdf of just noise. If P18 is

given a value of a0 , then

ao = po(y)dy (2.12)

where y is the magnitude of the received waveform, ao and po(y) are known, so Yo can be

solved for. The value of the threshold A is then

Pi(yo)
A - Po(Yo)' (2.13)

and the complete Neyman-Pearson test is

HI

A(y) = Po(Y) Ho A, (2.14)

where A(y) represents the likelihood ratio test (LRT). This test reads: choose HI if the

LRT is greater than A, choose H0 if the LRT is less than A. Pd can be found by integrating

PI(Y) over the region of Pf.:

Pd = pi(y)dy (2.15)
yo

(Maffett, 1989:275-277).

If the a priori probabilities of the two hypotheses (P[H0J and P[HI]) are known, a

method called the Bayes Risk test can be used to determine the threshold. Besides P[H 0 ]

and P[HI], the costs of each of the four possible choices from Figure 1 must be known.

The variables for the possible costs are as follows:

Coo : Cost of correct no target

CO1  : Cost of miss

C10  : Cost of false alarm

C1 1  : Cost of correct target present
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Usually, Coo and C11 have a cost of 0. If Coo = C11 = 0 and Co1 = CIO, the test is called

the ideal observer test. The objective of the Bayes Risk criterion is to minimize Bayes

Cost (B):

B = CooP[do,Ho] + CoP[do, Hi] + C1 oP[d•,Ho] + C11 P[d1 , Hi] (2.16)

Assuming C11 = Coo = 0, Melsa and Cohn show the LRT for the Bayes Risk is

p(yIHl) CloP[Ho]
A(y) = P(YIHo) do C 1 P[H1 ] (2.17)

(Melsa and Cohn,1978:45). The idea behind the test is that even though the received

signal's amplitude would indicate one hypothesis, it is much more important to correctly

identify the other hypothesis, so the threshold is skewed to compensate. As an example,

assume the job of the LRT is to perform target identification and the two hypotheses are

Ho : Target is a missile

HI : Target is a fighter

The cost variable would then be

Coo : Cost of correctly deciding missile

Col : Cost of deciding missile present when fighter present

CIO : Cost of deciding fighter present when missile present

C11  : Cost of correctly deciding fighter

Assume the cost of incorrectly identifying a missile (C10 ) is five times higher than the cost

of incorrectly identifying a fighter (C0 1 ), and that Coo = C 1 1 = 0. Also, assume the a priori

probabilities of H1 and H0 are equal. Then the LRT would be

HI

A() = (yHIi) ZA(y) P(YH) H0 5. (2.18)
p(yl2o)
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Most radar receivers are designed to perform target detection based on a number of

observations of a randomly fluctuating waveform. The receivers are usually designed to

optimize detection of waveforms that behave according to one of the four Swerling cases

for randomly fluctuating waveforms (Skolnik, 1980:46):

Swerling I: Amplitude of an entire pulse train is constant but behaves as a single

random variable with a Rayleigh pdf, from scan-to-scan. The phase of each pulse is assumed

to be a statistically independent random variable with a uniform pdf.

Swerling II: Similar to Swerling I except the amplitude of each pulse in the pulse

train is a statistically independent random variable with a Rayleigh pdf.

Swerling III: Similar to Swerling I except the amplitude of the pulse train is a random

variable with a one-dominant-plus-Rayleigh pdf.

Swerling IV: Similar to Swerling III except the amplitude of each pulse in the pulse

train is a statistically independent random variable with a one-dominant-plus-Rayleigh

pdf.

DiFranco and Rubin show that the optimum detection receiver for these waveforms is

a single pulse matched filter followed by an envelope detector, a sampler, an integrator, and

finally, a threshold comparator (DiFranco and Rubin, 1980:Ch.10 and 11). Kulp, Maffett,

and Dowdy each show that the Rayleigh and the one-dominant-plus-Rayleigh pdfs are not

always the optimum pdfs for the Swerling cases (Kulp, 1984:165-183), (Maffett, 1989:280-

285), (Dowdy, 1991:167).

2.7 Summary

This chapter presented a description of the nature of RCS and how it is used in radar

dei ction systems. In doing so, the importance of the pdf was demonstrated, along with

methods of optimizing the pdf in the Likelihood Ratio Test.
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III. Methodology

3.1 Introduction

This chapter introduces a method to determine the optimum pdf and parameter

estimator for any range of aspect angle needed. Assumptions made will be explained as

they arise. The MoM and MLE estimators will be determined for all pdfs considered in

this thesis. The RCS model generating program "ASPECT" is presented along with the

required inputs.

3.2 Parameter Determination

As explained in Chapter II, parameters will be estimated for the Rayleigh, One-

Dominant-Plus-Rayleigh, Rayleigh Squared (negative exponential), Lognormal, Normal,

Beta, and Weibull pdfs.

3.2.1 Rayleigh The Rayleigh pdf for n independent identically distributed (IID)

data samples is defined as (Difranco and Rubin, 1968:376)

pix,., 1 I) =, fl-• exp(.j-•-.) (3.1)

for x > 0. To determine the MLE estimate of a, a sufficient statistic is found by taking

the natural logarithm of both sides of the equation, giving:

,n I n
lnp(X1,X 27 ...,xI)= x) - 2nlna - _ E 1 ,2. (3.2)

2a2 i=1

Taking the first derivative with respect to a and setting it equal to zero gives:

alnp(xl,X 2 ,..., Xn,,) -2n 1 n-2

Oa - -- E•Z 2  (3.3)
a O3i=1

- 0.
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Solving for a gives:

aMLE 1 i 2)2. (3.4)

The MoM estimate of a is found by first determining the second moment of the single

sample pdf:

00 x 3 _X2

P2 = -exp(2 -- )dx. (3.5)

The solution to this definite integral is found using the CRC integral #662:

xn exp(-axr)dx- = 7(k) (3.6)JO'* pa

where n > -1,p > O,a > 0, and k = n-'. Thus,P

A2 = (1) r(2)(37
a2 )2( 1 )2(37

= 2a 2 . (3.8)

Setting A2 equal to the sampled second moment and solving for a gives:

aMM X,2), (3.9)

which is identical to &tMLE.

3.2.2 Rayleigh Squared This pdf is found by transforming the random variable x

to the random variable y = x2. This is done by substituting y into the Rayleigh pdf for x

and multiplying the result by the Jacobian of the transformation,

= YII exp(.jY-. )I L (3.10)

"1 1
-flj- exp(::-.) (3.11)

3-2



The MLE estimate of a is found by taking the natural logarithm of both sides, which is

1 ny• 231

lnp(xl,X 2,...,xIa) = -nln2-2nlna- • y (3.12)
2a2-=1

Taking the first derivative with respect to a and setting the result equal to zero gives:

491np(xl,x 2,..., Xlna) _ -2n 1 (3.13)

t~a i=1

=0.

Solving for a gives:

aMLE = Yi)J (3.14)

1 2)
- •n i= X,2)½, (3.15)

which is identical to the MLE for the Rayleigh pdf.

The procedure for finding the MoM estimate of a is identical to the Rayleigh MoM

procedure, however the variables in Equation 24 are n = 5, a p-, p = 2, and k = 3.

Thus,

/•2 = ( F-(3)3 (3.16)

= 8a 4 . (3.17)

Setting A2 equal to the sampled second moment and solving for a gives:

1MoM -- (Zx2)" (3.18)

Unlike the Rayleigh pdf, the Rayleigh Squared pdf does not have identical MLE and MoM

estimates.
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3.2.3 One-Dominant-Plus-Rayleigh For n IID data samples, this pdf is defined as

(DiFranco and Rubin, 1968:407)

n~ 9X,3  3x 2
p(Xi,x 2 ,...,717a) = - 4 exp( 9(3.19),=1 ex(--•),3.9

n > 0.

Taking the natural logarithm of both sides of the equation gives:

lnp(x1 ,x 2,...,xla) = nln9-nln2-4nlna+3"lnxi-- a2xi 2. (3.20)
i=1 202i=1

Taking the derivatives of both sides with respect to a gives:

Olnp(xl, X2 , ..., xnIa) -4n 3 (3.21)

Setting the result equal to zero and solving for a gives:

&MLE = (- = 2)j. (3.22)

As with the Rayleigh pdf, &MoM = &MLE.

3.2.4 Lognormal For n IID data samples, this pdf is defined as (Law and Kelton,

1982:164)

n 1 (ln -I )) (3)2
P(XI'X2'""-XnI0`'I) = 1 ia(-),exp( )(3.23)

i=1 xo2)2,

x > 0.
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which is the transformation y = In x applied to the Normal pdf. Taking the natural

logarithm of both sides gives:

nn

lnp(x,,x 2,...,xnIOa,JU) = -nlna- nln2- nn- i-nxi2 2n ir-Zn,(3.24)

20,2  (lnn, x (3.25)

Taking the derivative with respect to u gives:

Ollnp(xi,x 2 ,...,xnja,J1) - n-= -(Inxi -/.1). (3.26)

Setting the derivative equal to zero and solving for p gives:

1 n

AMLE = -:lnXi. (3.27)
nSi= 1

Taking the derivative with respect to a gives:

np(xi, 2,..,xa,)_ n + E(lnxi - L)'. (3.28)

i=1

Setting the derivative equal to zero and solving for a gives:

MLE _ E((ln X, _A)2)4. (3.29)
n izl

The MoM estimates are found by transforming the lognormal pdf to the normal pdf. If

Y1,Y2,...,Yn = lnxl,lnX2,...,lnx, (3.30)

and x 1 , x 2, ... , xn are lognormally distributed random variables, then Y, Y2, ..., yn have a

normal distribution. By definition,

I n

AMoM - E Yi (3.31)

1 nn.
i=1

3-5



= IAMLE

1 n
•,-,-= E= y,2 (3.33)

ini=1

_ In X, 2 (3.34)

-&MM = (A•,.. - AMo.M)• (3.35)

=(1 -- (Inx, inE ,)2)1 (3.36)

= 0 MLE.

3.2.5 Normal For n IID data samples, the Normal pdf is defined as (Law and

Kelton, 1982:163)

= 1 exp( 2 -- (- A (3.37)

for -oo < x < co. Since the same parameters were determined for the Lognormal pdf,

the procedure to arrive at the MLE and MoM Normal parameters will be skipped and the

results presented:

I1 MLE = AMoM (3.38)

= - (3.39)
n .

=MLE - MoM (3.40)

S(E(x, -)2)½.-(3.41)
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3.2.6 Beta For n HID data samples, the Beta pdf is defined as (Law and Kelton,

1982:165)

r (p,.+3) ,)+ (f_(ii- (3.42)S=i -

for 0_<x1, X2 , ... , z,_<1. Taking the natural logarithm of both sides gives:

lnp(xi,x 2, ...,xnla,/3) = nlnr(a +/3)- nlnr(a•3.43)

-nlnr(/3) + (a - 1) lnxi + (/3 - 1) ln(1 - xi). (3.44)
i=1 i=1

Taking the derivative with respect to a and setting the result equal to zero gives:

Olnp(X1, X2, ... ,- XIa, /3) 8 ln r(a +±13) a ln r(a) (345)

n_______ 09 - n 09anxi 3.5
i=1

= 0.

Taking the derivative with respect to /3 and setting the result equal to zero gives:

Oln(a+/3) _ ln(/3) n
Olnp(xi,x 2,...,xnIa,/3) = n 0/3 0/3 + ln(I -x) (3.46)

00 i=1

- 0.

Beckman and Tietjen show that equations 3.45 and 3.46 can be rearranged to

()- '(& + /3) = InG, (3.47)

(/3) - (& + /3) = inG 2, (3.48)

where 4' is the digamma function and

n

G, = If(xi)i (3.49)
i=1
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n

G2= f(1-x,). (3.50)

(Beckman and Tietjen, 1978:253-258). They proceed to show that equations 3.47 and 3.48

can be solved simultaneously, resulting in one equation with one variable:

T (1) - V1f{(•I-'(lnG 1 - lnG2 + * (i))) + 1} - lnG2 = 0. (3.51)

They give a Fortran root-solving program which, for the assumptions they make, gives

six decimal place accuracy. They also give a table of selected G1 and G2 values and

corresponding &MLE and /3 MLE values. Law and Kelton expand the table to cover the full

range of G, and G2 values (Law and Kelton, 1982:213-214). Values not listed in the tables

can be arrived at by interpolation. Beckman and Tietjen claim two decimal place accuracy

for this method.

The MoM estimates for a and P3 can be found without resorting to numerical methods.

The mean and variance of the Beta pdf are given as (Law and Kelton, 1982:165):

Ia- 
(3.52)

1 n

-- Z( 3.i (3.53)
n i.

or = afl (3.54)
(a +/3 + 1)(a +/,3)2

= • 2 - A. (3.55)

Solving for A2 gives:

a/p a
P2 (a +,a + 1)(a + 0)2 + a+ 0 (3.56)

a(a + 1) (3.57)
-(a + )(a + 3 + 1)

-n X? (3.58)
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Solving equations 3.52 and 3.56 simultaneously for a and P gives:

1- E" xQ EL i-i-E71 X$3
M"M =1 x(• " x, -i = x•) (3.59)

3oM = (1- _ LI Fn X,)( En-1 , - . En= x3)

ýMO , En, n X) (3.60)
n i n i 1

3.2.7 Weibull For n IID data samples, the Weibull pdf is defined as (Law and

Kelton, 1982:163):

n

P(Xl7X, •,.., 13,#) = -- x•-'exp(-( xi), (3.61)

x, i 0. (3.62)

Taking the natural logarithm of both sides gives:

n n

Inp(X1, 2 ,...,.XI•a,#) = nlna-naln +(a- 1)lnxi-n•,-•-Ex. (3.63)

Taking the derivative with respect to 3 gives:

0lnp(xI, X 2 , ... , x.•na) = -na + a#3(a+l) xi' (3.64)

Setting the result equal to zero and solving for P gives:

#MLE (3.65)

Taking the derivative with respect to a gives:

n n

Olnp(xi, X2•, --., Xn~la,/#) n • _n , n-
=. -- nln3+ ZV' + l0 In/ x*z (3.66)

Oa a
n

-#-' E z3lnxi. (3.67)
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Setting the result equal to zero, substituting the expression for 3 in equation 3.65 into #

in equation 3.66 and solving for a gives:

&MLE - ( Zi=l IX: -- . (3.68)

& can be solved for numerically, using Newton's Method:

f( x.)
Xn+, = X. f'(xn)" (3.69)

The resulting equation to find & using Newton's Method is

En 1= InXi + , •= ,,,.

&k+1 = &k + & (3.70)
-E" _(F &lnx,)2

+ "E n ,_6k 

_L-I x ,- -

The initial value chosen for & can be the MoM value which will be determined next.

The first two moments of the Weibufl pdf are (Derman, 1973:386)

it = /or(1 + ) (3.71)

- = /30F(1 + 2). (3.72)

Thus,

2 (F(i + 1 ))2
+ 2 (3.73)

P2 F(1+ + I)

( , X,)2
F ( ) (3.74)

Derman gives a table for determining values of given (1+_) (Derman, 1973:386). Once

& is found, / is given by

M-M n i• 1 Xl (3.75)
3-10(l+-1 )
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3.3 Data Inputs

The program ASPECT accepts data inputs in nxm matrix form. This is meant to

allow windows of data to be studied. Because the RCS surface map is 3-dimensional, care

should be taken when determining window size to prevent data distortion at the window

edges. A 01 by 41 size data set can be compared with any 02 by 02 data set, but both data

sets must result in rectangular matrices. Every sample interval increment along the #-axis

should be a new row and every increment along the 4-axis should be a new column.

ASPECT is designed to build pdf models from static data which are assumed to be

Independent Identically Distributed (IID) random variables. Dynamic data may be used if

no significant correlation exists between the time samples. If significant correlation exists,

the time spacing can be lengthened to a point where there is a maximum acceptable

correlation between the time samples. The resulting data should be checked to insure

enough samples have been used to represent a statistically significant data base (Dowdy,

1991:165).

Past efforts toward computerized RCS modeling have focused on building models

assuming all aspect angles have an equal probability of being presented to a radar. In

these cases, data from a narrow range of aspect angles were compared with the whole

range of values from the aircraft. The values from the windows tended to be concentrated

in one narrow range of the spectrum of the entire data set. This concentration would

result in small sample variances at most aspect angles. The mean of the window would

vary relative to the full range of values; its size depended on what part of the aircraft was

being modeled. In contrast, the mean of the window relative to itself would stay fairly

close to the median of the window and the variance would be much larger than the variance

of the window compared to full-range data. Henceforth in this study, when parameters

are estimated by comparing a localized window of data against the full-range of aircraft

data, the comparison will be referred to as Window vs. Full-Range. When the parameters

are estimated by comparing a localized window of data with itself, the comparison will

be referred to as Window vs. Window. The stability of the mean and large size of the

variance for the Window vs. Window data are caused by the fact that the normalization

of the data causes the windowed data to cover as many values as the full-range data. A
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consequence of the different statistical natures of the Window vs. Full-Range and the

Window vs. Window comparisons is that there are differences in the level of effectiveness

pdfs have with the two comparisons.

3.4 ASPECT Program Operation

This section gives a step by step explanation of the operation of the ASPECT pro-

gram.

3.4.1 Step 1: Input Prompts The user is prompted to input the name of the data

file to be used, the number of separate windows the full-range of data is to be taken from,

and the length and width of each of the full-range windows. The program then linearizes

the data, turning it into a single row of values. The data is linearized one row at a time

so the position of the modeled window sampled within the full range doesn't shift. The

user must determine before hand the beginning and ending linearized sample numbers of

the modeled window. This is easily done for a Window vs. Window comparison, since the

total one-dimensional length of the full-range is output as the variable 'data'. 'data' would

be the ending sample in this case.

The data is normalized as it is input. Because ASPECT performs pdf selection by

analyzing the statistical characteristics of a single set of input data, the relative amplitudes

of the samples within the set are the only data needed to generate the pdfs. For this reason,

normalization can be performed without fear of distorting the empirical distribution of the

data. ASPECT normalizes the data because all pdfs except the Normal require minimum

sample values of 0, and the Beta pdf requires a maximum sample value of at most 1.

After normalization, the user is prompted for the beginning and ending samples of

the modeled window. It is from this sample set that all the statistics used in the pdfs are

determined.

3.4.2 Step 2: Generation of Statistics The mean and second moment are the only

statistics necessary to determine the parameters of the pdfs.

3-12



3.4.3 Step 3: Parameter Determination In this section, the Beta and Weibull pa-

rameters are determined. 5MoM and /MoM are determined automatically. The subroutine

'interp' is called to determine the Weibull parameters. 'interp' contains Table 3.1 from
172

Derman, which gives values for from values of -. 'interp' uses linear interpolation(•MoAMt't

to find - , then finds /MoM.&M.Mf

Once the Beta and Weibull MoM parameters axe determined, ASPECT asks the user

if the MLE paremters are desired for the Beta or Weibull pdfs (MLE parameters equal

MoM parameters for all other pdfs). If Weibull MLE is desired, the subroutine 'newton'

is called. 'newton' prompts the user for an initial value for &MLE (&MoM is recommended)

and performs a Newton's Method iteration process on equation 3.70 until equation 3.68 is

true. If an initial value for &MLE is chosen too far from the actual &MLE, the iterations

could run away to infinity, in which case the ASPECT program operation will pause and

inform the user that oo has been encountered and that Vc' must be entered to break out of

the program. If another attempt is made, a good starting point usually turns out to be a

value closer to zero than &MoM.

If the Beta MLE parameters are desired, the 'bmle' subroutine is called. This sub-

routine performs a double linear interpolation to find &MLE and /MLE from Table 5.12 in

Law and Kelton, given G1 and G2 as described earlier in this chapter.

If the MLE parameters are produced, they will be the parameters used in the cdf

and pdf plots and the goodness-of-fit tests.

3.4.4 Step 4: PDF and CDF Plots After all pdf parameters are determined, the

pdfs are plotted individually, as is a histogram of the windowed data. The program can

be manipulated to allow multiple graph plots for visual comparisons, but since there are

many occasions when one pdf or histogram will dwarf all the other functions, multiple

graph plots are not done automatically. The points on the plots are found by finding

values for the pdfs for every - increment from 0 to 1.

The empirical cdf (ecdf) is found by first comparing the windowed data with the

same set of incremented values used to find the pdfs. If a windowed sample is within

±-L0 of the incremented value, a counter that is initialized at 0 is increased by 1. Each
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windowed data sample is compared with each incremented value. The counter is zeroed for

each new incremented value. The number the counter assigns to each incremented value

is the magnitude of the increase of the ecdf at the incremented value.

The other cdfs are found by increasing the value of the cdf by the magnitude of the

pdf at each of the incremented values used in the pdf formation. The ecdf and the cdfs

are then all normalized by dividing each cdf by its largest (final) value.

Each cdf is then individually plotted against the ecdf for a visual goodness-of-fit

assessment. As with the pdf plots, the program can be manipulated to compare more than

one cdf at a time.

3.4.5 Step 5: Goodness-of-Fit Kolmogorov and Chi-Square test statistics are pro-

duced for each cdf. The Kolmogorov test statistics are found as explained in Chapter 2.

To determine the Chi-Square test statistics, equal probability bin intervals must be found.

Determining the interval points requires finding the inverse values of the distribution func-

tions for the required bin probabilities. For many distributions, the inverse values cannot

be found in closed form. However, the approximate interval points can be found relatively

easily using numerical methods as demonstrated in the following example:

Suppose the number of histogram bins chosen was three. Then, for equal probability,

every bin would have a 33% chance of a sample occurring in its interval. For a sample set

of normalized data, the first bin would have a low interval of 0. The high interval point

of the first bin and the low interval point of the second bin would be the input value that

produced the cdf value closest to 1. The high interval point of the second bin and the low

interval point of the third bin would be the input value that produced the cdf value closest

to 2. The high end interval of the third bin would be 1. Values from the window would

then be placed in the bin who's intervals they fell between. This method results in two

decimal place accuracy.

The test statistics for each cdf are printed out for the Kolmogorov and the Chi-Square

tests.
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3.4.6 Step 6: Optimum Model Determination The optimum pdf is declared to be

the pdf with the smallest Kolmogorov test statistic. The name of the pdf as well as the

estimated parameters are printed out. The Kolmogorov test statistic is used because, on

occasions when the Kolmogorov test and the Chi-Square test disagree, visual assessment

usually agrees with Kolmogorov.

The user must refer to tables to determine the level of significance the pdf produces.

3.5 Summary

This chapter explained the computations required to impliment the 'ASPECT' RCS

model optimization program. The MLE and MoM parameters for all pdfs used were

determined. The required inputs and format were explained.
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IV. Determination of Optimum RCS Models for Window vs. Full-Range

Sample Sets

4.1 Introduction

This chapter will begin with an overview of the types of parameters of several pdfs

and the effects changes in those parameters will have on the shape of the pdfs. The rest of

the chapter will analyze how the pdfs handled the empirical distribution of the data from

each aspect window when compared with the full-range of data. Window vs. Full-Range

comparisons are the standard method for forming RCS models.

Three different types of data will be tested at each of the three modeled aspect

windows. The first type will be fighter data with samples taken in the 0 = 900 plane. The

second type will be fighter data with samples taken in a wider 0 window: 0 = 90°±50. The

third type of data will be missile data in the 0 = 90* plane.

4.2 Parameter Types

The pdfs considered in this investigation will be characterized by three parameters,

namely location, scale, and shape.

Location parameters determine where the centroid of the probability densities is

located in the range of the pdf values. Location parameters are used in the Normal and

Lognormal pdfs.

Scale parameters compress or expand the probability density a pdf will have over

its range. For the pdfs used here, a decreasing scale parameter value will compress pdfs,

an increasing scale parameter value will expand pdfs. A compressed pdf will exhibit very

small probability densities over most of its range and very large probability densities over

a small portion of its range. An expanded pdf will exhibit increased probability densities

over the majority of its range, but the peak probability densities will be much lower than

those of a compressed pdf. Scale parameters are used in the Normal, Lognormal, and

Weibull pdfs.
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Shape parameters determine both the shape and location of the pdf. They can cause

the pdf to behave like a negative or positive exponential function, a lognormal function, or

a normal function. Shape parameters are used in Beta, Weibull, and Rayleigh-class pdfs.

All parameters used in this study are linear combinations of the mean (m) and second

moment (M 2 ). The mean and second moment are two of the three components that can

determine a pdfs effectiveness. The third component is the skew of the pdf. Skew is the

difference in the slopes on either side of the peak values of a pdf. If the right slope is

steeper than the left slope, the pdf is skewed to the right. If the left slope is steeper than

the right slope, the pdf is skewed to the left.

The following subsections discuss each pdf's response to changes in its parameters.

4.2.1 Normal The location parameter a will center the pdf at the mean of the

sample set. The scale paremeter a will expand the pdf for increasing values of variance

and compress the pdf for decreasing values of variance. The Normal pdf is never skewed.

Figure 4.1 shows the Normal pdf's response to changes in 1L and a.

8 mu=0.5, sigma=O.002
7 \ mu=0.5, sigma=O.02 -

7 u=0.25, sigma=O.O02 -

6

5
p(x) 4

3

2
1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normal Density Function

Figure 4.1. Normal pdf's response to changes in M and a
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4.2.2 Lognormal Since the lognormal pdf acts as a normal pdf applied to the nat-

ural logarithm of the sample set, the location parameter A centers the pdf around the

mean of the natural logarithm of the sample set. This will cause the pdf to be skewed to

the left of the true mean of the sample set. The skewing will be further enhanced by the

sample variable in the denominator of the non-exponential portion of the pdf which is the

result of the Jacobian of the transformation y = In x. This variable will result in enhanced

probability densities for lower-range sample values. The scale parameter A compresses the

pdf for decreasing sample variances and expands the pdf for increasing sample variances.

Figure 4.2 shows the Lognormal pdf's response to changes in j and o.

4.2.3 Weibull The shape parameter a will cause the pdf to approximate an expo-

nential pdf at low values (a < 3) and is the exponential pdf for a = 1. At higher values of

a, the pdf will become more normal in appearance and center on the sample mean. The

scale parameter/3 compresses the pdf for small values of /3 and expands the pdf for large

values of /3. The Weibull pdf is always skewed to the right for values of a>4. Figure 4.3

shows the Weibull pdf's response to changes in a and /3.

4.2.4 Beta The Beta pdf has two shape parameters, a and /3. The ratio and

magnitudes of a and /3 determine the shape of the pdf. If a >/3, the pdf will be skewed to

the right against the high boundary of the data range. If a </3, the pdf will be skewed to

the left against the low boundary of the data range. If a = /3, the pdf will be normal shaped

and will be centered in the data range. If a = /3 = 1, the pdf is uniform, with a magnitude

of 1. If a or /3 is less than 1, the pdf approximates an exponential function, increasing

toward the high range boundary if a > /3 or the low range boundary if a < /3. If a and

/3 are both less than one, then the pdf will approximate two exponential functions. One

exponential will increase toward the high range boundary, the other will increase toward

the low range boundary. Figure 4.4 shows the Beta pdf's response to changes in a and /3.

The Beta pdf is the most flexible pdf used in this study, making it useful for sample

sets that do not exhibit a Normal-type distribution. However, it is much less responsive to

changes in variance than the Lognormal, Normal, or Weibull pdfs and cannot attain the

highly compressed forms required to model sample sets with small variances.
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Figure 4.2. Lognormal pdf's response to changes in #u and o
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Figure 4.3. Weibull pdf's response to changes in a andO•
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Figure 4.4. Beta pdf's response to changes in a and /

4.2.5 Rayleigh Class The Rayleigh class shape parameter a is a linear transforma-

tion of the second moment of the sample set. The maximum values of the Rayleigh class

pdfs are always skewed to the left of the sample mean. Small values of a will compress the

pdfs and force the maximum probability density closer to the sample mean. Large values

of a will expand the pdfs and force the maximum probability density farther away from

the sample mean. The Rayleigh (y = x 2) pdf is actually a negative exponential function,

whose highest probability density is always at zero. Because the Rayleigh class pdfs are

dependent only on the sample second moment, they are less responsive to changes in vari-

ance than any of the other pdfs used in this study. Figure 4.5 shows the Rayleigh pdf's

responses to changes in a.

4.3 Test Results for Window vs. Full-Range RCS Models

This section will present an analysis of the behaviour of the pdfs to different aspect

windows studied. The Kolmogorov Level of Significance, and the Chi-Square Level of

Significance for Window vs. Full-Range RCS Models are presented in Appendix A.
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Figure 4.5. Rayleigh pdf's response to changes in a

Due to the Rayleigh-class pdfs' inability to compress for low variances, the Rayleigh-

class pdfs (Rayleigh, One-Dominant-Plus-Rayleigh, and Rayleigh Squared made poor Win-

dow vs. Full-Range models for all sample sets. For this reason, the performance of the

Rayleigh-class pdfs will not be discussed in the following sections, but the results are listed

in the tables of Appendix A along with the other pdfs.

In the following sections, the pdfs with the lowest Kolmogorov and Chi-Square test

statistics are presented. If more than one pdf has the lowest Chi-Square test statistic, the

low Chi-Square pdf with the lowest Kolmogorov test statistic is presented as the best Chi-

Square pdf. If that pdf happens to be the pdf with the lowest Kolmogorov test statistic of

all pdfs, two Chi-Square pdfs are presented for comparison.

4.3.1 Nose-On Fighter: 0 = 900 The sample set is characterized by a medium

range mean (m=0.52), a relatively small variance (var=7.06 x 10-'), a small number of

samples (n= 11), and is skewed to the right. The cdfs and pdfs with the lowest Kolmogorov

and Chi-Square test statistics are compared with the sample set and presented in Figures

4.6-4.9.
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The Kolmogorov Goodness-of-Fit Test (KGFT) declares the Weibull MLE and MoM,

Lognormal, and Normal pdfs to have a Level of Significaice (LoS) greater than 20% (the

highest LoS given by Conover (Conover, 1980: Table 14). However, the Weibull MLE has

the smallest test statistic and is chosen as the optimum pdf. The Weibull MLE is the most

compressed pdf (highest probability density over narrowest range). As can be seen by the

CDF figures, the Empirical Cumulative Distribution Function (ECDF) is skewed to the

right. The Weibull pdfs are the only pdfs able to match this skewing to any degree.

Because of the small number of samples, the Chi-Square Goodness-of-Fit Test (CGFT)

is limited to one degree of freedom by the restrictions listed in section 2.5. For this rea-

son, the miminum test statistic is shared by the Weibull MLE and MoM, Lognormal, and

Normal pdfs. The CGFT is more conservative than the KGFT, declaring the LoS to be

between 10% and 25%. This range of LoS is the second highest range listed by Conover

(Conover, 1980: Table 2).

4.3.2 Nose-On Fighter: 0 = 900+50 This sample set is characterized by a medium

range mean (m=0.45), a small variance (var=2.21x 10-4), a large number of samples

(n=121), and a rightward skew. The pdfs and cdfs with the lowest Kolmogorov and Chi-

Square test statistics are presented in Figures 4.10-4.13. The KGFT declares the Weibull

MLE and MoM pdfs to have a LoS greater than 20%, with the Weibull MoM having a

slightly lower test statistic than the Weibull MLE. The Weibull MoM matches the test

statistic with the highest compression. The Weibull pdfs are the only ones able to match

the rightward skew of the sample set.

The CGFT declares the Normal pdf to have the highest LoS (10% > a > 5%). The

CGFT declares all the other pdfs to have a LoS less than 0.1%. This is a poor showing

for all pdfs and is probably due to the few degrees of freedom (2) used in the test. Time

limitations prevented building a CGFT with the many degrees of freedom which can be

used with large sample sets. Visual assessments of Figures 4.10-4.13 show the Weibull

MoM pdf to be virtually indistinguishable from the sample set, while the Normal pdf

cannot match the rightward skew of the sample set.
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4.3.3 Nose-On Missile: 0 = 90* This sample set is characterized by a medium

range mean (m=0.47), a small variance (var=2.23 x 10-4), a medium number of samples

(n=21), and no visible skew. The best Kolmogorov and ChiSquare pdfs and cdfs are

presented in Figures 4.14-4.17.

The KGFT declares the Weibull MLE and MoM, Logiiormal, and Normal pdfs to

have a LoS greater than 20%. The Normal pdf has the smallest test statistic, the Lognor-

mal's test statistic is slightly larger. Unlike the other Nose-On sample sets, the optimum

pdf does not have the highest probability distribution. In fact, the Weibull MLE and MoM

and Lognormal pdfs all have higher probability densities than the Normal. However, the

Weibull pdfs are skewed to the right and the Lognormal pdf is skewed to the left. The

Normal pdf is optimum because of the lack of a skewed sample set and the closeness of the

values of the peak probability densities.

The CGFT declares the Weibull MLE and MoM, Lognormal, and Normal pdfs all to

have a LoS between 2.5% and 5%. Though a visual assessment of Figures 4.14 and 4.16

shows the Lognormal and Normal pdfs to be a very close match to the sample set, the

CDFT declares all the pdfs to be a poor fit.
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Figure 4.6. Top KGFT and CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.7. Top KGFT and CGFT PDF of Fighter Data at Nose-On ±5*, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.8. Top CGFT CDF of Fighter Data at Nose-On -50, 0.50 sample interval, 6 =
90', 6 - 6 polarization, 1 GHz Full-Scale
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Figure 4.9. Top CGFT PDF of Fighter Data at Nose-On +50, 0.50 sample interval, 0 =
900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.10. Top KGFT CDF of Fighter Data at Nose-On +50, 0.50 sample interval,
0 = 90' ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.11. Top KGFT PDF of Fighter Data at Nose-On ±5*, 0.50 sample interval,
0 = 900 + 5*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.12. Top CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval,
0 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.13. Top CGFT PDF of Fighter Data at Nose-On ±5-, 0.50 sample interval,
9 = 90* ± 5*, 0 - B polarization, 1 GHz Full-Scale
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Figure 4.14. Top KGFT and CGFT CDF of Missile Data at Nose-On ±5*, 0.5* sample
interval, 0 = 90°, 9 - 0 polarization, 18 GHz Full-Scale
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Figure 4.15. Top KGFT and CGFT PDF of Missile Data at Nose-On ±5°, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.16. Top CGFT CDF of Missile Data at Nose-On ±5*, 0.50 sample interval,
0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.17. Top CGFT PDF of Missile Data at Nose-On -5*, 0.50 sample interval,
0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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4.3.4 Broadside Fighter: 0 = 900 This sample set is characterized by a high range

mean (m=0.67), a large variance (var=1.44 x 10-2), a medium number of samples (n=21),

and a slight rightward skew. The best Kolmogorov and Chi-Square pdfs and cdfs are

presented in Figures 4.18-4.21.

The KGFT declares the Beta MLE and MoM, Weibull MLE and MoM, and Normal

pdfs to have a LoS greater than 20%. The Beta MLE has the lowest test statistic. Since

the sample mean is greater than 0.5, the Beta pdf is skewed rightward, along with the

Weibull pdf. The large variance greatly expands the variance sensitive pdfs (Lognormal,

Normal, and Weibull), leaving the Beta MLE pdf with the highest probability density.

The CGFT agrees with the KGFT, declaring the Beta MLE and Weibull MLE pdfs

to have a LoS greater than 25%. However, the CGFT rates the Beta MoM, Weibull MoM,

Lognormal, and Normal pdfs relatively poorly (10% > LoS > 2.5%).

4.3.5 Broadside Fighter: 0 = 900 -50 This sample set is characterized by a medium

range mean (m=0.55), a medium sized variance (var=4.3 X 10-'), a large number of samples

(n=231), and a slight rightward skew. The resulting pdfs and cdfs are presented in Figures

4.22 and 4.23.

The large percentage of off-broadside samples in this sample set compared with the

Broadside Fighter:0 = 900 sample set has lowered the sample mean. The medium range

sample mean prevents the Beta pdf from skewing. The medium size variance expands the

Normal and Lognormal pdfs more severely than the Weibull pdfs. The KGFT declares the

Weibull MLE and MoM pdfs to have a LoS greater than 20%. The Weibull MoM has the

lowest test statistic and the highest probability density.

The CGFT gives the Weibull MoM the lowest test statistic, which results in the

highest LoS (10% > a > 5%), a relatively poor result.

4.3.6 Broadside Missile: 0 = 900 This sample set is characterized by a high range

mean (m=0.81), a large variance (var=1.96 x 10-2), a small number of samples (n=41),

and a strong rightward skewing. The resulting pdfs and cdfs are presented in Figures

4.24-4.27.
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The KGFT declares the Beta MLE and MoM, the Weibull MLE and MoM, and the

Normal pdfs to have a LoS greater than 20%. However, the combination of a wide variance,

a high mean, and a strong rightward skew gives the Beta pdfs much lower test statistics

than the other pdfs. The Beta MLE has the highest probability density, but this level of

compression forces the peak probability density far to the right of the sample mean. With

the / parameter approaching 1.00, the Beta MLE pdf approximates a positive exponential

function. the Beta MoM does not compress as severely as the Beta MoM with the large

sample mean and therefore attains the lowest test statistic. Although the Weibull pdfs are

skewed to the right as well, the wide variance expands the pdfs too severely for them to

be as effective as the Beta pdfs.

The CGFT declares the Beta MLE and MoM pdfs to have a LoS greater than 25%.

The CGFT rated the Weibull MLE and MoM relatively highly as well, giving them a LoS

between 10% and 25%.
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Figure 4.18. Top KGFT and CGFT CDF of Fighter Data at Broadside ±5°, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.19. Top KGFT and CGFT PDF of Fighter Data at Broadside +5*, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.20. Top CGFT CDF of Fighter Data at Broadside ±50, 0.50 sample interval,
0 = 90*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.21. Top CGFT PDF of Fighter Data at Broadside ±5*, 0.50 sample interval,
0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.22. Top KGFT and CGFT CDF of Fighter Data at Nose-On +50, 0.50 sample
interval, 8 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.23. Top KGFT and CGFT PDF of Fighter Data at Nose-On ±5*, 0.5* sample
interval, 0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.24. Top KGFT and CGFT CDF of Missile Data at Broadside +5°, 0.5° sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.25. Top KGFT and CGFT PDF of Missile Data at Broadside ±5°, 0.5° sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.26. Top CGFT CDF of Missile Data at Broadside ±5", 0.50 sample interval,

0 = 90*, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.27. Top CGFT PDF of Missile Data at Broadside -50, 0.50 sample interval,

0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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4.3.7 Tail-On Fighter: 0 = 90* This sample set is characterized by a low range

mean (m=0.23), a medium sized variance (var=2.8 x 10-3), a small number of samples

(n=11), and a slight skew to the right. The resulting pdfs and cdfs are presented in Figures

4.28-4.31. The low-range mean skews the Beta pdfs to the left, approaching the Lognormal

function in shape. The medium size variance expands the Lognorma 'Id Normal pdfs to

a greater extent than the Weibull pdfs. The KGFT declares the Beta MLE and MoM,

Weibull MLE and MoM, Lognormal. and Normal pdfs to have a LoS greater than 20%. The

Weibull MLE pdf matches the rightward skew with the highest compression and attains

the highest probability density and lowest test statistic.

The CGFT declares the Beta MLE and MoM, Weibull MLE and MoM, and Normal

pdfs to have a LoS greater than 25%. The one degree of freedom prevents picking a winner

from these pdfs.

4.3.8 Tail-On Fighter: 6 = 900 ± 50 This sample set is nearly identical to the

Tail-On Fighter: 0 = 900 sample set. It is characterized by a low-range mean (m=0.25), a

medium size variance (var=2.5x 10-3), a large number of samples (n= 121), and a rightward

skew. The resulting pdfs and cdfs are presented in Figures 4.32-4.35.

As in the last section, the Beta pdfs are skewed to the left along with the Lognormal

pdf, and the Lognormal and Normal pdfs are expanded to a greater extent than the Weibull

pdfs. The Weibull pdfs match the rightward skew of the sample set. The KGFT declares

the Weibull MLE and MoM and the Normal pdfs to have a LoS greater than 20%. The

Weibull MLE attains the lowest test statistic and highest probability density.

The CGFT declares the Beta MoM, Weibull MoM, and Normal pdfs to have a LoS

between 5% and 2.5%. This is another poor performance for a large sample set. The Beta

MoM and Normal pdfs have the lowest test statistic.

4.3.9 Tail-On Missile: 6 = 900 This sample set is characterized by a medium range

mean (m=0.58), a small variance (var=2.82 x 10-'), a small number of samples (n=21),

and a slight leftward skew. The pdfs and cdfs are presented in Figures 4.36-4.39.
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This is the only sample set that is skewed to the left. With the middle range mean

forcing the Beta pdf into a Normal-type distribution, the Lognormal pdf is the only pdf

that can match the leftward skew. In addition, the small variance gives the Lognormal and

Normal pdfs the compression to match that of the Weibull pdfs. The KGFT declares the

Weiball MLE and MoM, Lognormal, and Normal pdfs to have a LoS greater than 20%.

The Lognormal pdf matches the highest probability density with the lowest test statistic.

The CGFT declares the Weibull MLE and MoM, Lognormal, and Normal pdfs to

have a LoS between 10% and 25%. These pdfs have identical test statistics.

4.4 Summary of Window vs. Full-Range RCS Models

Statistical analysis of the fighter and missile data reveals that even at the largest

Window vs. Full-Range variances, high compression is required to effectively model the

sample sets. The most compressed pdf attains the lowest Kolmogorov test statistic in seven

of the nine sample sets modeled. Because of the importance of maximum compression,

the pdfs' response to changes in variance is the most important factor in determining

best goodness-of-fit. The Beta pdfs' limited response to variance changes make the pdfs

ineffective for small variance sample sets but most effective for large variance sample sets.

The reverse is true for the Lognormal and Normal pdfs. The Weibull pdfs compress at

small variances at the same rate as the Lognormal and Normal pdfs but do not expand

at the same rate as the Lognormal and Normal pdfs for large variances. Therefore, the

Weibull pdfs are able to perform effectively at both high and low variance sample sets.

The Weibull's response to variance changes enables the pdf to be the only function that

attains a Kolmogorov LoS greater than 20% for every sample set.

The skew of the sample sets is also important in determining goodness-of-fit. In seven

of the nine sample sets modeled, the sample set is skewed to the right. This enhances the

Weibull pdfs' effectiveness and hurt the Lognormal and Normal pdfs' effectiveness. It helps

the Beta pdfs' effectiveness for high-mean sample sets, but hurt the Beta pdfs' effectiveness

elsewhere. The consistent skewing of the data indicates that sample variances will not get

much lower than the low values of the sample sets observed. At the lowest variance levels.,

skewing is insignificant. At this level the Normal pdf becomes the most effective model.
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The mean only effects the Beta pdfs' performance, skewing the pdf as described in

section 4.2.4.

The mean and variance of the fighter and missile sample sets are similar in two of

the three aspect windows modeled. Both nose-on sample sets are characterized by a mid-

range mean and a small variance. Both broadside sample sets posess high-range means

and large variances. The sample sets posess different characteristics at the tail-on aspect.

The fighter sample set posesses a low range mean and medium variance, while the missile

sample set posesses a mid-range mean and small variance.

The variances of the sample sets are indicators of the number of scattering surfaces

at each aspect angle, with a small variance indicating few scatterers and a large variance

indicating many scatterers. This being the case, the magnitude of the variance at each

aspect window of the missile and fighter sample sets is typical of what would be expected

for each class of object.

The mean of each sample set reflects the degree of perpendicular reflection of the

scattering surfaces at each aspect window. Again, the experimental data matches what

would be expected for both classes of objects.

The relatively consistent rightward skewing of the data was not expected. Every

sample set of fighter data is rightward skewed. However, each missile aspect angle is

skewed differently: the broadside is skewed rightward, the tail-on is skewed leftward and

the nose-on is not skewed. If the rightward skewing is a consistent trait in aircraft data,

the Weibull would be the most effective pdf for Window vs. Full-Range models.

The MLE performs better for small sample sets, while the MoM performs better

for large sample sets. There is no apparent correlation between mean or variance and

parameter estimator performance.
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Figure 4.28. Top KGFT and CGFT CDF of Fighter Data at Tail-On +5', 0.50 sample
interval, 0 - 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.29. Top KGFT and CGFT PDF of Fighter Data at Tail-On +50, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.30. Top CGFT CDF of Fighter Data at Tail-On -5*, 0.5* sample interval,
0 = 90*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.31. Top CGFT PDF of Fighter Data at Tail-On -5*, 0.5* sample interval, 0 -
90*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.32. Top KGFT CDF of Fighter Data at Tail-On -50, 0.50 sample interval,
0 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.33. Top KGFT PDF of Fighter Data at Tail-On +5°, 0.50 sample interval,
0 = 900 + 5°, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.34. Top CGFT CDF of Fighter Data at Tail-On +50, 0.5* sample interval,
0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.35. Top CGFT PDF of Fighter Data at Tail-On +50, 0.50 sample interval, 0 -

900 + 5*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 4.36. Top KGFT and CGFT CDF of Missile Data at Tail-On +50, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.37. Top KGFT and CGFT PDF of Missile Data at Tail-On -50, 0.5* sample
interval, 0 = 900, 8 - 0 polarization, 18 GHz Full-Scale
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Figure 4.38. Top CGFT CDF of Missile Data at Tail-On -5°, 0.50 sample interval, 0 =

900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 4.39. Top CGFT PDF of Missile Data at Tail-On ±50, 0.50 sample interval, 0 =

900, 0 - 0 polarization, 18 GHz Full-Scale
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V. Determination of Optimum Model for Window vs. Window

Comparisons

5.1 Introduction

This chapter will analyze how each pdf handles the empirical distribution of the data

from each aspect window when the statistical characteristics are derived from the aspect

window solely. The aspect windows and types of aircraft studied will be identical to that

of Chapter IV.

Because the statistical characteristics are derived solely from the aspect windows,

the normalized range of each sample set will stretch from zero to one. This is in contrast

to the Window vs. Full-Range comparisons where the sample set could be restricted to a

small section of the full range and usually was.

The expanded range of the sample sets should result in a consistently larger sample

variance.

The Kolmogorov Level of Significance, and the Chi-Square Level of Significance for

Window vs. Full-Range RCS Models are presented in Appendix A.

5.2 Test Results for Window vs. Window RCS Models

5.2.1 Nose-On Fighter:O = 900 This data set is characterized by a mean of 0.74, a

variance of 9.07 x 10-', a small number of samples (n = 11), and a strong rightward skew.

The best fit KGFT and CGFT models are presented in Figures 5.1-5.4.

This variance is four times larger than the largest Window vs. Full-Range variance.

The mean is also larger than most of the Window vs. Full-Range means. The wide

variance expands the pdfs so they can cover a sample set than is beginning to appear

uniform. The KGFT declares the Beta MLE and MoM pdfs to have a LoS greater than

20%. The Beta MLE has the lowest Kolmogorov test statistic. However, for this sample

set, visual assessment agrees with the CGFT, which declares the Beta MoM to be the only

pdf with a LoS greater than 25%. The average separation between the Beta MoM and

the sample set (0.0544) is much smaller than the difference between the Beta MLE and
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the sample set (0.1275). However, the n = 10 sample climbs at a much higher rate than

the Beta MoM. For this data sample, the Beta MoM is less expanded than the MLE. The

parameters for the Beta function are less than one for the MoM and the MLE. This causes

the pdf to approximate a negative exponential function against the low-range boundary

and a positive exponential function against the high-range boundary. The MoM pdf has

unequal parameters which skew the emphasis of the two exponential functions toward the

positive exponential function against the high-range boundary. This closely matches the

data histogram. The MLE has small, equal parameters, which press the two exponential

functions against their respective boundaries. This is the result of an extreme form of

expansion.

No other pdf could approximate the sample set because of the high variance.

5.2.2 Nose-On Fighter: 0 = 900 ± 50 This data set is characterized by a mean of

0.64, a variance of 2.9 x 10-2, a large number of samples (n = 121), and no discernable

skew. The best fit KGFT and CGFT models are presented in Figures 5.5-5.8.

Though a non-skewed sample set with a mean above 0.5 can mean trouble for the

Beta pdfs, the wide variance expands all other pdfs to a greater extent. The KGFT declares

the Beta MoM to have the highest LoS, though it is only between 10% and 20%. There are

no other pdfs with that range of LoS. The lack of skew with a mean shifted off mid-range

hurts the Beta pdfs, but the large variance prevents the Normal, Lognormal, or Weibull

pdfs from compressing enough to match or improve the performance of the Beta pdfs. A

visual assessment shows the Weibull MoM and Normal pdfs matching the Beta MoM in

tracking the ECDF. The CGFT declares the Normal and Weibull pdfs to have the lowest

test statistic. The CGFT gives the pdfs a LoS between 5% and 2.5%.

5.2.3 Nose-On Missile: 0 = 900 This data set is characterized by a mean of 0.50,

the widest variance of any sample set (var=0.1083), a small number of samples (n = 21),

and no discernable skew. The best fit KGFT and CGFT models are presented in Figures

5.9-5.10.
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The sample set appears to have a fairly uniform distribution. The Beta pdfs will

present a uniform distribution if a = / = 1. If a and 1 are equal but less than one, the

pdf is expanded toward the boundaries of the range. The Beta MoM is the least expanded

of the Beta pdfs and attains the lowest Kolmogorov test statistic. The Beta MLE and

MoM, Normal, and Rayleigh pdfs attain a Kolmogorov LoS greater than 20%. Because

the mean of the sample set is mid-range, the Beta pdfs do not skew and therefore are able

to maintain a fairly constant probability density throughout the range.

The CGFT agrees with the KGFT, giving the Beta MoM a LoS greater than 20%.
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Figure 5.1. Top KGFT CDF of Fighter Data at Nose-On +50, 0.50 sample interval, 0
900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.2. Top KGFT PDF of Fighter Data at Nose-On +5*, 0.5* sample interval, 0 =

900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.3. Top CGFT CDF of Fighter Data at Nose-On ±5*, 0.50 sample interval, 0 =
900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.4. Top CGFT PDF of Fighter Data at Nose-On +50, 0.5* sample interval, 0 =

900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.5. Top KGFT CDF of Fighter Data at Nose-On +5*, 0.50 sample interval, 0 -
900 + 5*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.6. Top KGFT PDF of Fighter Data at Nose-On ±5*, 0.50 sample interval, 0 =
900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.7. Top CGFT CDF of Fighter Data at Nose-On ±50, 0.50 sample interval, 0 =

90' ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.8. Top CGFT PDF of Fighter Data at Nose-On ±50, 0.50 sample interval, 0 =

900 ± 5°, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.9. Top KGFT and CDFT CDF of Missile Data at Nose-On +50, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 5.10. Top KGFT and CGFT PDF of Missile Data at Nose-On +5°, 0.50 sample
interval, 0 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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5.2.4 Broadside Fighter: 0 = 900 This data set is characterized by a mean of 0.66,

a variance of 3.9 x 10-2, a small number of samples (n = 21), and no discernable skew.

The best fit KGFT and CGFT models are presented in Figures 5.11-5.14.

The KGFT declares the Beta MoM, Weibull MoM, and Normal pdfs to have a LoS

greater than 20%. The Weibull MLE's a parameter is expanded below a value of three,

so the pdf shifts far to the left, where it begins to approximate the negative exponential

function. Both Beta MLE parameters are expanded below one, so the pdf is pressed

against both range boundaries. However, the small variance (for Window vs. Window

comparisons) requires a pdf that can approximate a normal function. The Weibull MoM

and Normal pdfs have normal shaped functions. Because the mean is above 0.5, the Beta

MoM is skewed right, but the Beta MoM is able to maintain a higher compression than

the Weibull MoM and Normal pdfs, and attains the lowest Kolmogorov test statistic.

Because their densities are centered correctly, the CGFT declares the Weibull MoM

and Normal pdfs to have the highest LoS (25% > a > 10%). Visual assessment tends to

agree with the CGFT again.

5.2.5 Broadside Fighter: 0 = 900 ± 50 This data set is characterized by a mean of

0.64, a variance of 1.8 x 10-2, a large number of samples (n = 231), and a rightward skew.

The best fit KGFT and CGFT models are presented in Figures 5.15-5.16.

The sample variance is the smallest of the Window vs. Window comparisons. This

allows the Weibull MoM to compress and become rightward skewed to the extent that

the Weibull MoM attains the lowest Kolmogorov test statistic, although none of the pdfs

match the compression of the sample set. The Beta MoM and Weibull MoM pdfs attain

the highest LoS (20% > a > 10%).

The CGFT declares the Weibull MoM to have the lowest test statistic, though, as

with all other large sample sets, the test statistic results in a poor LoS.

5.2.6 Broadside Missile: 0 = 900 This data set is characterized by a mean of 0.71,

a variance of 4.46 x 102, a small number of samples (n = 41), and a rightward skew. The

best fit KGFT and CGFT models are presented in Figures 5.17-5.20.
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The Beta MLE is expanded into a postive exponential function by the very high

inean. The Beta MoM does not skew to the extent of the Beta MLE and approximates a

ramp function. The Weibull pdfs approach a normal function and, along with the Normal

pdf, reach their maximum probability density too early. The KGFT declares the Beta

MoM, Weibull MoM, and Normal pdfs to have a LoS greater than 20%. The Beta MoM

has the smallest test statistic, with a value less than half that of the Weibull MoM or

Normal pdfs.

The CGFT agrees with the KGFT, giving the Beta MoM a LoS greater than 25%.

Visual assessment clearly shows the Beta MoM to be the best-fit pdf.
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Figure 5.11. Top KGFT CDF of Fighter Data at Broadside +5°, 0.50 sample interval,
0 = 90°, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.12. Top KGFT PDF of Fighter Data at Broadside ±50, 0.50 sample interval,
0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.13. Top CGFT CDF of Fighter Data at Broadside ±50, 0.50 sample interval,

0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.14. Top CGFT PDF of Fighter Data at Broadside ±50, 0.50 sample interval,

0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.15. Top KGFT and CGFT CDF of Fighter Data at Broadside -5*, 0.5* sample

interval, 0 = 900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.16. Top KGFT and CGFT PDF of Fighter Data at Broadside +50, 0.50 sample

interval, 0 = 901 ± 5*, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.17. Top KGFT and CGFT CDF of Missile Data at Broadside +5', 0.50 sample
interval, 0 = 90', 0 - 0 polarization, 18 GHz Full-Scale
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Figure 5.18. Top KGFT and CGFT PDF of Missile Data at Broadside -50, 0.50 sample
interval, 6 = 900, 0 - 0 polarization, 18 GHz Full-Scale
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5.2.7 Tail-On Fighter: 0 = 900 This data set is characterized by a mean of 0.66, a

variancie of 6.92 x 10-2, a small number of samples (n = 11), and no discernible skew. The

best-fit KGFT and CGFT models are presented in Figures 5.21-5.24.

Though the variance is not the largest of the sample sets, the samples appear almost

uniformly distributed. There are many pdfs to which the KGFT gives an LoS greater than

20%: Beta MLE and MoM, Weibull MoM, Normal, and One-Dominant-Plus-Rayleigh.

The Beta MLE is expanded to the extent that the exponential functions are pressed tight

against the range boundaries. The Beta MoM is a positive exponential function with a

very shallow slope until very close to the high-range boundary. The pdf approximates a

uniform distribution to a certain extent. The Weibull MoM, Normal, and One-Dominant-

Plus-Rayleigh pdfs are all normal functions centered near the sample mean. The KGFT

gives the Beta MoM the lowest test statistic.

The CGFT declares the Beta MLE and MoM pdfs to have the highest LoS (a > 25%).

Though the Beta MLE may be evenly distributed about the mean, a visual assessment

indicates that the Beta MLE does not come close to approximating the sample set.

5.2.8 Tail-On Fighter: 0 = 900 ± 50 This data set is characterized by a mean of

0.68, a variance of 4.25 x 10-2, a large number of samples (n = 121), and no discernible

skew. The best-fit KGFT and CGFT models are presented in Figures 5.25-5.28.

The variance is tighter for this sample set than the Tail-On Fighter: 0 = 900 sample

set. The KGFT declares the Beta MoM pdf to have a LoS greater than 20%, along with

the lowest test statistic. As has been seen in many other sample sets, the Beta MoM is the

only pdf able to maintain high compression at wide variances and a rightward skew. The

Weibull MoM and Normal pdfs produce normal functions centered on the sample mean.

As variance increases, the Weibull pdf becomes normal shaped, then begins to skew left.

The CGFT declares the Weibull MoM and Beta MoM pdfs to have the highest LoS,

though, as with all the large sample sets, the LoS is poor (5% > a > 2.5%). The Weibull

MoM has the lowest test statistic. A visual assessment shows the Beta MoM to have the

best fit.
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5.2.9 Tail-On Missile: 0 = 900 This data set is characterized by a mean of 0.43,

a variance of 0.103, a small number of samples (n = 21), and slight leftward skew. The

best-fit KGFT and CGFT models are presented in Figures 5.29-5.30.

With the second highest variance, this sample set is nearly uniform. All parameters

for the Beta pdfs are less than one, so they are expanded to opposing exponential functions.

As usual, the Beta MoM is less expanded than the Beta MLE, so the Beta MoM has a

fairly high probability density across the sample range. The Weibull MoM skews leftward,

but skews too far. The high-range probability densities are not large enough. The Normal

pdf puts too much emphasis on the middle range of the sample set. The KGFT declares

the Beta MoM and Weibull MoM to have a LoS greater than 20%. The Beta MoM has

the lowest test statistic.

The CGFT agrees with the KGFT, declaring the Beta MoM to be the only pdf with

a LoS greater than 25%. Visual assessment agrees with the two tests.

5.3 Analysis of Window vs. Window RCS Models

5.3.1 PDF Performance The Window vs. Window sample sets have a consistently

high mean: Avg. mean = 0.68, standard deviation = 9.4 x 10-2. The variance ranges

from 1.8 x 10-2 to 1.02 x 101. This range's low end is the high end of the Window vs.

Full-Range variance range, and the range's high end is a level of magnitude above the top

of the Window vs. Full-Range variance range. Consequently, the variance sensitive pdfs

(Weibull, Lognormal, Normal) are expanded much more than the Beta pdfs. The Weibull

MLE shape parameter has a value less than one four times, at these values, the Weibull

pdf approximates the negative exponential function. Because only one of the sample sets

is skewed left, the extreme expansion of the Weibull MLE makes the pdf ineffective for

Window vs. Window modeling. The Weibull MoM is not as variance sensitive, but is still

skewed left when the sample sets are not.

The scale parameter of the Lognormal pdf causes the pdf to approximate a negative

exponential function when the parameter is greater than one. This is the case in eight of

the nine sample sets. In the ninth case, the sample set has the smallest variance. The
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pdf is still centered far to the left of the sample set values. The lognormal pdf is more

sensitive to variance changes than any other pdf. The wide variance skews the pdf to the

left consistently, making the pdf ineffective.

The Normal pdf does not expand as fast as the Lognormal. When the Beta pdf is

skewed too far to the right for the sample mean, the Normal is able to outperform the

Beta in the CGFT. This only happens at the lower sample variances.

The Weibull MoM performs well at the same low variances that the Normal performs

well on. At these variances, the Weibull MoM outperforms the Beta MoM on the CGFT.

At the lowest Window vs. Window sample set, the Weibull MoM outperforms the Beta

MoM on the KGFT. For the three lowest sample variances, a visual assessment indicates

the Weibull MoM to be as good or better a model than the Beta MoM.

The Rayleigh and One-Dominant-Plus-Rayleigh pdfs perform slightly better than

they do for Window vs. Full-Range models. The high variances expand the sample sets to

the extent that the permanently expanded Rayleigh class pdfs can occasionally model the

sample sets well. This permanent expansion is due to consistent sample second moments

which are not significantly different in value from the Window vs. Full-Range sample sets.

The Rayleigh (y = x2) pdf is consistently ineffective, as it is for the Window vs.

Full-Range models.

The Beta pdf is made for the Window vs. Window sample sets. The pdf remains

expansion resistant to high variances. The high variances result in a multitude of sample

distributions which also favor the Beta over other pdfs. The expansion resistance and

versatility of the pdf give it as high a Kolmogorov LoS as any pdf in every sample set. The

Beta pdf has the lowest Kolmogorov test statistic in eight of the nine sample sets. The

ninth sample set posesses the smallest variance of the group.

Perhaps because the pdf skews at the routinely high means of the Window vs. Win-

dow sample sets, the Beta pdf does not perform as well on the Chi-Square tests. This

would be caused by the uneven distribution about the sample set mean that the Beta pdf

exhibits. The Weibull and Normal pdfs outperform the Beta on the sample sets with the
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four lowest variances when the CGFT is used. Visual assessment agrees with the CGFT

once out of the three cases where there is a difference between the KGFT and the CGFT.

5.3.2 Parameter Estimation The MoM outperforms the MLE in every sample set.

In the one sample set where the Beta MLE is rated better than the MoM by the KGFT,

a visual assessment clearly indicates the Beta MoM to have the better fit. Though the

consistently wide variances may be the cause of the MoM's success in Window vs. Window

models, variance plays no apparent role in determining the optimum parameter estimator

in Window vs. Full-Range models. The determiner in those models appears to be the

number of samples in the sample set. In the Window vs. Window models, sample size

makes no contribution toward parameter estimator effectiveness.

5.3.3 Sample Set Behaviour The wide sample variance experienced matches expec-

tations for this type of model. The high mean of the Window vs. Window models matches

the rightward skew of Window vs. Full-Range models. The high mean of the Window vs.

Window sample sets could be a result of the relatively high RCS magnitudes encountered

at the modeled windows. The relatively high magnitudes would cause the majority of

the samples to be large along with a few small samples. This hypothesis is backed up by

the fact that the two sample sets that do not have large means occur in the Tail-On and

Nose-On windows, which do not have as large RCS magnitudes as the Broadside windows.

5.4 Summary

This chapter studies the results of the Window vs. Window RCS modeling procedure.

It shows that the variance of the sample sets is much larger than the variance of the Window

vs. Full-Range sample sets. The mean is found to be consistently high in the sample range.

It is shown that, for the large variances exhibited, the Beta pdf is the only pdf able

to handle the resulting large variety of sample distributions.

The best parameter estimator is clearly the Method of Moments. The reason for this

could be the large sample variances, but this is uncertain.
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Figure 5.19. Top KGFT and CGFT CDF of Fighter Data at Tail-On ±5", 0.5° sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.20. Top KGFT and CGFT PDF of Fighter Data at Tail-On +50, 0.5° sample
interval, 0 = 900, 0 - 0 polarization, 1 GHz Full-Scale

5-19



1 1I I 1

0.9 - ECDF -

0.8 - Beta MLE -

0.7-

0.6

P(x) 0.5

0.4-
0.3
0.2
0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tail-On RCS vs. Window-Window Beta MLE CDF

Figure 5.21. Top CGFT CDF of Fighter Data at Tail-On +50, 0.50 sample interval,
0 = 90°, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.22. Top CGFT PDF of Fighter Data at Tail-On -5°, 0.50 sample interval, 0 =
900, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.23. Top KGFT CDF of Fighter Data at Tail-On ±50, 0.50 sample interval,
o = 900 ± 50, 9 - 0 polarization, 1 GHz Full-Scale
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Figure 5.24. Top KGFT PDF of Fighter Data at Tail-On ±5', 0.50 sample interval,
0 = 90° ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.25. Top CGFT CDF of Fighter Data at Tail-On ±50, 0.50 sample interval,
0 = 90* ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.26. Top CGFT PDF of Fighter Data at Tail-On +50, 0.5* sample interval, 0 =
900 ± 50, 0 - 0 polarization, 1 GHz Full-Scale
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Figure 5.27. Top KGFT and CGFT CDF of Missile Data at Tail-On ±50, 0.50 sample
interval, e = 900, 0 - 0 polarization, 18 GHz Full-Scale
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Figure 5.28. Top KGFT and CGFT PDF of Missile Data at Tail-On +5*, 0.50 sample
interval, 0 = 90°, 0 - 0 polarization, 18 GHz Full-Scale
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VI. Conclusions and Recommendations

6.0.1 Conclusions 1. The statistical characteristics of the three modeled aspect

windows can be predicted. These characteristics will determine the optimum pdf.

2. The Weibull pdf will consistently be the optimum pdf for narrow variance sample

sets. The Beta pdf will consistently be the optimum pdf for wide variance sample sets.
f

3. Though never quite as reliable as Window vs. Full-Range models, Window vs.

Window models perform satisfactorily for the Kolmogorov Goodness-of-Fit test under the

specifications of Section 2.5. The decrease in reliability is probably due to the wider

variance of the Window vs. Window sample sets.

4. The Method of Moments will be the superior parameter estimator for Window vs.

Window models. The Maximum Likelihood Estimator tends to be the superior parameter

estimator for small-sample-set Window vs. Full-Range models, the Method of Moments

tends to be the superior parameter estimator for large-sample-set Window vs. Full-Range

models.

5. When determining goodness-of-fit, a visual assessment should always be performed

to insure the pdf with the lowest test statistic is the closest match to the ECDF. Both the

Kolmogorov and Chi-Square tests can give erroneous results under certain conditions. One

bad sample can cause a close fitting pdf to fail the Kolmogorov test, while skewed sample

sets can cause problems for the Chi-Square test.

6.0.2 Recommendations 1. Build signal detection and signal identification models

using the optimized static RCS models as the base RCS value. Use numerical methods to

determine the received detected waveform plus noise.

2. Form methods for measuring data skew. This would provide a method for better

explaining why a particular pdf is optimum. Use numerical methods to determine the skew

of the pdf models.

3. Evaluate more data sets to verify the statistical characteristics of the sample sets

noted in this study.
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4. Determine the causes of the varying performances of the MoM and MLE parameter

estimators.
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Appendix A. Test Statistics and Levels of Significance

The Kolmogorov and Chi-Square results are presented for every aspect angle and

both aircraft types.
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Table A.1. Fighter: 8 = 90* Kolmogorov Levels of Significance for Window vs. Full-
Range, n=number of samples, TI=Test Statistic, Wp= 1-a Quantile

pdf Window n T, Wp Level of Significance
Center

Beta MLE 00 11 0.3325 0.352 20%> a > 10%
Beta MoM

Weibull MLE 0.2144 0.308 a >20%
Weibull MoM 0.2346 0.308 a >20%

Lognormal 0.2958 0.308 a >20%
Normal 0.2883 0.308 a >20%

Rayleigh 0.5474 0.468 1%> a
Rayleigh-y MLE 0.7872 0.468 1%> a
Rayleigh-y MLE 0.7253 0.468 1%> a

Rayleigh+1 1 0.4527 0.468 2%> a >1%
Beta MLE 900 21 0.1156 0.226 a >20%
Beta MoM 0.1427 0.226 a >20%

Weibull MLE 0.1192 0.226 a >20%
Weibull MoM 0.1420 0.226 a >20%

Lognormal 0.2247 0.259 20%> a >10%
Normal 0.1455 0.226 a >20%

Rayleigh 0.4964 0.344 1%> a
Rayleigh-y MLE 0.7239 0.344 1%> a
Rayleigh-y MOM 0.7180 0.344 1%> a

Rayleigh+1 1 0.3740 0.344 1%> a
Beta MLE 1800 11 0.1555 0.308 a >20%
Beta MoM 0.1854 0.308 a >20%

Weibull MLE 0.1285 0.308 a >20%
Weibull MoM 0.1468 0.308 a >20%

Lognormal 0.2262 0.308 a >20%
Normal 0.1632 0.308 a >20%

Rayleigh 0.3520 0.391 10%> a >5%
Rayleigh-y MLE 0.6263 0.308 1%> a
Rayleigh-y MoM 0.3701 0.391 10%> a >5%

Rayleigh+1 1_ 1_ 10.2515 0.308 a >20%
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Table A.2. Fighter: 0 = 900 Chi-Square Levels of Significance for Window vs. Full-
Range, n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic,
Wp= 1-a Quantile

pdf Window n DoF T - Wp Level of Significance
Center I

Beta MLE 00 11 1 4.4545 5.024 5%> a >2.5%
Beta MoM

Weibull MLE 1 2.2727 2.706 25%> a >10%
Weibull MoM 1 2.2727 2.706 25%> a >10%

Lognormal 1 2.2727 2.706 25%> a >10%
Normal 1 2.2727 2.706 25%> a >10%

Rayleigh 1 11 10.83 0.1%> a
Rayleigh-y MLE 1 11 10.83 0.1%> a
Rayleigh-y MoM 1 11 10.83 0.1%> a

Rayleigh+1 1 7.3636 7.879 1%> a >0.5%
Beta MLE 900 21 1 0.5238 1.323 a >25%
Beta MoM 1 4.3333 5.024 5%> a >2.5%

Weibull MLE 1 0.5238 1.323 a >25%
Weibull MoM 1 4.3333 5.024 5%> a >2.5%

Lognormal 1 4.7143 5.024 5%> a >2.5%
Normal 1 3.5714 3.841 10%> a >5%

Rayleigh 2 18.8095 13.82 0.1%> a
Rayleigh-y MLE 2 55.3810 13.82 0.1%> a
Rayleigh-y MoM 2 55.3810 13.82 0.1%> a

Rayleigh+1 _ 2 13.0952 13.82 0.5%> a >0.1%
Beta MLE 1800 11 1 0.8182 1.323 a >25%
Beta MoM 1 0.8182 1.323 a >25%

Weibull MLE 1 0.8182 1.323 a >25%
Weibull MoM 1 0.8182 1.323 a >25%

Lognormal 1 2.2727 2.706 25%> a >10%
Normal 1 0.8182 1.323 a >25%

Rayleigh 1 4.4545 5.024 5%> a >2.5%
Rayleigh-y MLE 1 7.3636 7.879 1%> a >0.5%
Rayleigh-y MoM 1 4.4545 5.024 5%> a >2.5%

Rayleigh+1 1 1 2.2727 2.706 25%> a >10%
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Table A.3. Missile: 0 = 900 Kolmogorov Levels of Significance for Window vs. Full-
Range, n=number of samples, Tl=Test Statistic, Wp=l-a Quantile

pdf Window n T, Wp Level of Significance
Center

Beta MLE 00 21 0.4186 0.344 1%> a
Beta MoM

Weibull MLE 0.1435 0.226 a >20%
Weibull MoM 0.1586 0.226 a >20%

Lognormal 0.1368 0.226 a >20%
Normal 0.1337 0.226 a >20%

Rayleigh 0.5976 0.344 1%> a
Rayleigh-y MLE 0.8201 0.344 1%> a
Rayleigh-y MoM 0.7322 0.344 1%> a

Rayleigh+1 0.5351 0.344 1%> a
Beta MLE 900 41 0.0840 0.167 a >20%
Beta MoM 0.0476 0.167 a >20%

Weibull MLE 0.1189 0.167 a >20%
Weibull MoM 0.1147 0.167 a >20%

Lognormal 0.2216 0.237 5%a >2%
Normal 0.1532 0.167 a >20%

Rayleigh 0.5076 0.255 1%> a
Rayleigh-y MLE 0.7092 0.255 1%> a
Rayleigh-y MoM 0.7281 0.255 1%> a

Rayleigh+1 0.3551 0.255 1%> a
Beta MLE 1800 21 0.4392 0.344 1%> a

Beta MoM
Weibull MLE 0.1248 0.226 a >20%
Weibull MoM 0.1355 0.226 a >20%

Lognormal 0.1018 0.226 a >20%
Normal 0.1033 0.226 a >20%

Rayleigh 0.6373 0.344 1%> a
Rayleigh-y MLE 0.8382 0.344 1%> a
Rayleigh-y MoM 0.8051 0.344 1%> a

Rayleigh+1 0.5624 0.344 1%> a
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Table A.4. Missile: 0 = 900 Chi-Square Levels of Significance for Window vs. Full-Range,
n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic, W,=l-a
Quantile

pdf Window n DoF T, Wp Level of Significance
Center

Beta MLE 00 21 1 28.7143 10.83 0.1%> a
Beta MoM

Weibull MLE 1 4.3333 5.024 5%> a >2.5%
Weibull MoM 1 4.3333 5.024 5%> a >2.5%

Lognormal 1 4.3333 5.024 5%> a >2.5%
Normal 1 4.3333 5.024 5%> a >2.5%

Rayleigh 2 63 13.82 0.1%> a
Rayleigh-y MLE 2 63 13.82 0.1%> a
Rayleigh-y MoM 2 25.6667 13.82 0.1%> a

Rayleigh+1 2 63 13.82 0.1%> a
Beta MLE 900 41 2 0.3415 2.773 a >25%
Beta MoM 2 1.3171 2.773 a >25%

Weibull MLE 2 3.2683 4.605 a >25%
Weibull McM 2 3.26830 2.773 25%> a >10%

Lognormal 2 17.5366 13.82 0.1%> a
Normal 2 5.4634 5.991 10%> a >5%

Rayleigh 3 38.6829 16.27 0.1%> a
Rayleigh-y 3 127.1207 16.27 0.1%> a
Rayleigh-y 3 127.1207 16.27 0.1%> a

Rayleigh+1 3 21.8537 16.27 0.1%> a
Beta MLE 1800 21 1 25.6667 10.83 0.1%> a
Beta MoM

Weibull MLE 1 2.4286 2.706 25%> a >10%
Weibull MoM 1 2.4286 2.706 25%> a >10%

Lognormal 1 2.4286 2.706 25%> a >10%
Normal 1 2.5286 2.706 25%> a >10%

Rayleigh 2 63 13.82 0.1%> a
Rayleigh-y 2 63 13.82 0.1%> a
Rayleigh-y 2 63 13.82 0.1%> a

Rayleigh+1 2 63 13.82 0.1%> a
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Table A.5. Fighter: 0 = 90* ± 5* Kolmogorov Levels of Significance for Window vs.
Full-Range, n=number of samples, T1=Test Statistic, Wp=l-a Quantile

pdf Window n T, Wp Level of Significance
Center

Beta MLE 00 121 0.3745 0.148 1%> a
Beta MoM

Weibull MLE 0.0733 0.097 a >20%
Weibull MoM 0.0553 0.097 a >20%

Lognormal 0.1134 0.124 10%> a >5%
Normal 0.1059 0.111 20%> a >10%

Rayleigh 0.5493 0.148 1%> a
Rayleigh-y MLE 0.7867 0.148 1%> a
Rayleigh-y MoM 0.6893 0.148 1%> a

Rayleigh+ 1 0.4817 0.148 1%> a
Beta MLE 900 231 0.1274 0.107 1%> a
Beta MoM 0.0877 0.0895 10%> a >5%

Weibull MLE 0.0655 0.070 a >20%
Weibull MoM 0.0432 0.070 a >20%

Lognormal 0.1248 0.107 1%> a
Normal 0.0906 0.100 5%> a >2%

Rayleigh 0.4475 0.107 1%> a
Rayleigh-y MLE 0.7008 0.107 1%> a
Rayleigh-y MoM 0.6517 0.107 1%> a

Rayleigh+1 0.3334 0.107 1%> a
Beta MLE 1800 121 0.1276 0.138 5%> a >2%
Beta MoM 0.0986 0.111 20%> a >10%

Weibull MLE 0.0490 0.097 a >20%
Weibull MoM 0.0655 0.097 a >20%

Lognormal 0.1364 0.138 5%> a >2%
Normal 0.0816 0.097 a >20%

Rayleigh 0.3261 0.148 1%> a
Rayleigh-y MLE 0.5944 0.148 1%> a
Rayleigh-y MoM 0.3356 0.148 1%> a

Rayleigh+1 1_ 1_10.2291 0.148 1%> a
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Table A.6. Fighter: 0 = 900 ± 50 Chi-Square Levels of Significance for Window vs. Full-
Range, n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic,
Wp= 1-a Quantile

pdf Window n DoF T, Wp Level of Significance
Center

Beta MLE 0* 121 2 263.1736 13.82 0.1%> a
Beta MoM

Weibull MLE 2 19.2066 13.82 0.1%> a
Weibull MoM 2 19.2066 13.82 0.1%> a

Lognormal 2 29.7438 13.82 0.1%> a
Normal 2 5.5702 5.991 10%> a >5%

Rayleigh 3 409.2893 16.27 0.1%> a
Rayleigh-y MLE 3 464.3306 16.27 0.1%> a
Rayleigh-y MoM 3 484.0000 16.27 0.1%> a

Rayleigh+1 _3 181.6860 16.27 0.1%> a
Beta MLE 900 231 2 30.5368 13.82 0.1%> a
Beta MoM 20.6667 13.82 0.1%> a

Weibull MLE 2 11.8355 13.82 0.5%> a >0.1%
Weibull MoM 2 5.9502 5.991 10%> a >5%

Lognormal 2 81.1039 13.82 0.1%>a
Normal 2 20.6667 13.82 0.1%> a

Rayleigh 3 489.9307 16.27 0.1%> a
Rayleigh-y MLE 3 638.4589 16.27 0.1%> a
Rayleigh-y MoM 3 369.9740 16.27 0.1%> a

Rayleigh+1 3 262.7879 16.27 0.1%> a
Beta MLE 1800 121 2 21.9339 13.82 0.1%> a
Beta MoM 2 6.1488 7.378 5%> a >2.5%

Weibull MLE 2 9.8678 10.6 I%> a >0.5%
Weibull MoM 2 7.1405 7.378 5%> a >2.5%

Lognormal 2 36.9504 13.82 0.1%> a
Normal 2 6.1488 7.378 5%> a >2.5%

Rayleigh 3 175.5702 16.27 0.1%> a
Rayleigh-y MLE 3 223.4215 16.27 0.1%> a
Rayleigh-y MoM 3 160.1157 16.27 0.1%> a

Rayleigh+1 3 71.6860 16.27 0.1%> a
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Table A.7. Fighter: 9 = 90* Kolmogorov Levels of Significance for Window vs. Window,
n=number of samples, T1=Test Statistic, Wp=l-a Quantile

pdf Window n T, Wp Level of Significance
Center

Beta MLE 00 11 0.2283 0.308 a > 20%
Beta MoM 0.2792 0.308 a > 20%

Weibull MLE 0.6355 0.468 1%> a
Weibull MoM 0.4495 0.468 2%> a >1%

Lognormal 0.7276 0.468 1%> Q
Normal 0.4274 0.437 5%> a >2.5%

Rayleigh 0.5165 0.468 1%> a
Rayleigh-y MLE 0.6349 0.468 1%> a
Rayleigh-y MLE 0.6453 0.468 1%> a

Rayleigh+1 0.4381 0.468 2%> a >1%
Beta MLE 900 21 0.3018 0.321 5%> a >2%
Beta MoM 0.1527 0.226 a >20%

Weibull MLE 0.5058 0.344 1%> a
Weibull MoM 0.1546 0.226 a >20%

Lognormal 0.7743 0.344 1%> a
Normal 0.1578 0.226 a >20%

Rayleigh 0.4013 0.344 1%> a
Rayleigh-y MLE 0.6492 0.344 1%> a
Rayleigh-y MOM 0.6450 0.344 1%> a

Rayleigh+1 0.2492 0.259 20%> a >10%
Beta MLE 1800 11 0.2606 0.308 ca >20%
Beta MoM 0.1964 0.308 a >20%

Weibull MLE 0.5803 0.468 1%> a
Weibull MoM 0.2460 0.308 a >20%

Lognormal 0.7475 0.468 1%> a
Normal 0.2248 0.308 a >20%

Rayleigh 0.3546 0.391 10%> a >5%
Rayleigh-y MLE 0.5529 0.468 1%> a
Rayleigh-y MoM 0.5536 0.468 1%> a

Rayleigh+1 0.2434 0.308 a >20%
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Table A.8. Fighter: 0 = 900 Chi-Square Levels of Significance for Window vs. Window,
n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic, Wp=l-a
Quantile

pdf Window n DoF T, Wp Level of Significance
Center

Beta MLE 00 11 1 2.2727 2.706 25%> a >10%
Beta MoM 1 0.8182 1.323 a >25%

Weibull MLE 1 4.8182 5.024 5%> a >2.5%
Weibull MoM 1 1.5455 2.706 25%> a >10%

Lognormal 1 7.3636 7.879 1%> a >0.5%
Normal 1 2.2727 2.706 25%> a >10%

Rayleigh 1 4.4545 5.024 5%> a >2.5%
Rayleigh-y MLE 1 4.4545 5.024 5%> a >2.5%
Rayleigh-y MoM 1 4.4545 5.024 5%> a >2.5%

Rayleigh+1 1 2.2727 2.706 25%> a >10%
Beta MLE 900 21 1 13.8571 10.83 0.1%> a
Beta MoM 1 5.0952 6.635 2.5%> a >1%

Weibull MLE 1 17.6667 10.83 0.1%> a
Weibull MoM 1 3.1905 3.841 10%> a >5%

Lognormal 1 55.3810 10.83 0.1%> a
Normal 1 3.1905 3.841 10%> a >5%

Rayleigh 2 14.6190 13.82 0.1%> a
Rayleigh-y MLE 2 48.1429 13.82 0.1%> a
Rayleigh-y MoM 2 41.6667 13.82 0.1%> a

Rayleigh+1 2 4.7143 5.991 10%> a >5%
Beta MLE 1800 11 1 0.0909 1.323 a >25%
Beta MoM 1 0.0909 1.323 a >25%

Weibull MLE 1 3.7273 3.841 10%> a >5%
Weibull MoM 1 1.1818 1.323 a >25%

Lognormal 1 7.3636 7.879 1%> a >0.5%
Normal 1 0.8182 1.323 a >25%

Rayleigh 1 2.2727 2.706 25%> at >10%
Rayleigh-y MLE 1 7.3636 7.879 1%> a >0.5%
Rayleigh-y MoM 1 7.3636 7.879 1%> a >0.5%

Rayleigh+1 1 1 2.2727 2.706 25%> a >10%
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Table A.9. Missile: 0 = 90* Kolmogorov Levels of Significance for Window vs. Window,
n=number of samples, T1=Test Statistic, Wp=l-a Quantile

pdf Window n T, Wp Level of Significance

Center I
Beta MLE 00 21 0.1603 0.226 a >20%
Beta MoM 0.1303 0.226 a >20%

Weibull MLE 0.2760 0.287 10%> a >5%
Weibull MoM 0.2324 0.259 20%> a >10%

Lognormal 0.5055 0.344 1%> a
Normal 0.1919 0.226 a >20%

Rayleigh 0.2048 0.226 a >20%
Rayleigh-y MLE 0.3221 0.344 2%> a >1%
Rayleigh-y MoM 0.2998 0.321 5%> a >2%

Rayleigh+1 0.3545 0.344 1%> a
Beta MLE 900 41 0.2087 0.212 10%> a >5%
Beta MoM 0.0716 0.167 a >20%

Weibull MLE 0.3189 0.255 1%> a
Weibull MoM 0.1475 0.167 a >20%

Lognormal 0.6765 0.255 1%> a
Normal 0.1557 0.167 a >20%

Rayleigh 0.3405 0.255 1%> a
Rayleigh-y MLE 0.5720 0.255 1%> a
Rayleigh-y MoM 0.5796 0.255 1%> a

Rayleigh+1 1 0.2365 0.237 5%> a >2%
Beta MLE 1800 21 0.2377 0.259 20%> a >10%
Beta MoM 0.1214 0.226 a >20%

Weibull MLE 0.2715 0.287 10%> a >5%
Weibull MoM 0.1956 0.226 a >20%

Lognormal 0.3850 0.344 1%> a
Normal 0.2520 0.259 20%> a >10%
Rayleigh 0.2887 0.321 5%> a >2%

Rayleigh-y MLE 0.2947 0.321 2%> a >1%
Rayleigh-y MoM 0.2454 0.259 20%> a >10%

Rayleigh+1 0.3430 0.344 2%> a >1%
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Table A.10. Missile: 0 = 90* Chi-Square Levels of Significance for Window vs. Window,
n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic, W,=1-
a Quantile

pdf Window n DoF T, W- Level of Significance
Center

Beta MLE 00 21 1 4.3333 5.024 5%> a >2.5%
Beta MoM 1 0.5283 1.323 a >25%

Weibull MLE 1 6.6190 5.0246.635 2.5%> a >1%
Weibull MoM 1 7.0000 7.879 1%> a >0.5%

Lognormal 1 18.4286 10.83 0.1%> a
Normal 1 4.3333 5.024 5%> a >2.5%

Rayleigh 2 8.1429 9.210 2.5%> a >1%
Rayleigh-y MLE 2 5.8571 5.991 10%> a >5%
Rayleigh-y MoM 2 6.2381 7.378 5%> a >2.5%

Rayleigh+1 2 15.000 13.82 0.1%> a
Beta MLE 900 41 2 59.8780 13.82 0.1%> a
Beta MoM 2 1.5610 2.773 a >25%

Weibull MLE 2 16.4310 4.605 0.1%> a
WeibuUl MoM 2 3.5122 4.605 25%> a >10%

Lognormal 2 104.4878 13.82 0.1%>a
Normal 2 3.5122 4.605 25%> a >10%

Rayleigh 3 21.5610 16.27 0.1%> a
Rayleigh-y 3 75.9512 16.27 0.1%> a
Rayleigh-y 3 82.7805 16.27 0.1%> a
Rayleigh+1 3 14.4878 16.27 0.5%> a >0.1%
Beta MLE 1800 21 1 5.4762 6.635 2.5%> a >1%
Beta MoM 1 1.6667 2.706 25%> a >10%

Weibull MLE 1 5.8571 6.635 2.5%> a >1%
Weibull MoM 1 6.2381 6.635 2.5%> a >1%

Lognormal 1 12.7143 10.83 0.1%> a
Normal 1 6.2381 6.635 2.5%> a >1%

Rayleigh 2 8.5238 9.210 2.5%> a >1%
Rayleigh-y 2 12.3333 13.82 0.5%> a >0.1%
Rayleigh-y 2 6.2381 7.378 5%> a >2.5%

Rayleigh+1 2 8.9048 9.210 2.5%> a >1

A-11



Table A.11. Fighter: 0 = 90* ± 5* Kolmogorov Levels of Significance for Window vs.
Window, n=number of samples, T1=Test Statistic, Wp= 1-a Quantile

pdf Window n T, Wp Level of Significance
Center

Beta MLE 00 121 0.1816 0.148 1%> a
Beta MoM 0.1074 0.111 20%> a >10%

Weibull MLE 0.1943 0.148 1%> a
Weibull MoM 0.1142 0.124 10%a >5%

Lognormal 0.5295 0.148 1%> a
Normal 0.1236 0.124 10%> a >5%

Rayleigh 0.3953 0.148 1%> a
Rayleigh-y MLE 0.5850 0.148 1%> a
Rayleigh-y MoM 0.5735 0.148 1%> a

Rayleigh+1 0.2376 0.148 1%> a
Beta MLE 900 231 0.1576 0.107 1%> a
Beta MoM 0.0780 0.080 20%> a >10%

Weibull MLE 0.1244 0.107 1%> a
Weibull MoM 0.0758 0.080 20%> a >10%

Lognormal 0.4818 0.107 1%> a
Normal 0.0898 0.090 10%> a >5%

Rayleigh 0.3877 0.107 1%> a
Rayleigh-y MLE 0.6199 0.107 1%> a
Rayleigh-y MoM 0.6046 0.107 1%> a

Rayleigh+1 10.2611 0.107 1%> a
Beta MLE 1800 121 0.1296 0.138 5%> a >2%
Beta MoM 0.0679 0.097 a >20%

Weibull MLE 0.1862 0.148 1%> a
Weibull MoM 0.1199 0.124 10%> a >5%

Lognormal 0.5354 0.148 a >1%
Normal 0.1197 0.124 10%> a >5%

Rayleigh 0.3212 0.148 1%> a
Rayleigh-y MLE 0.5675 0.148 1%> a
Rayleigh-y MoM 0.5674 0.148 1%> a

Rayleigh+1 1 0.2004 0.148 1%> a
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Table A.12. Fighter: 0 = 900 ± 5* Chi-Square Levels of Significance for Window vs. Win-
dow, n=number of samples, DoF= Degrees of Freedom, T1=Test Statistic,
Wp=l-a Quantile

pdf Window n DoF T1  Wp Level of Significance
Center

Beta MLE 00 121 2 50.4463 13.82 0.1%> a
Beta MoM 2 9.2066 9.21 2.5%> a >1%

Weibull MLE 2 21.6860 13.82 0.1%> a
Weibull MoM 2 6.5620 7.378 5%> a >2.5%

Lognormal 2 149.3884 13.82 0.1%> or
Normal 2 6.5620 7.378 5%> a >2.5%

Rayleigh 3 78.2975 16.27 0.1%> a
Rayleigh-y MLE 3 252.6777 16.27 0.1%> a
Rayleigh-y MoM 3 235.0744 16.27 0.1%> a

Rayleigh+1 3 22.0165 16.27 0.1%> a
Beta MLE 900 231 2 60.7965 13.82 0.1%> a
Beta MoM 2 15.7749 13.82 0.1%> a

Weibull MLE 2 23.9567 13.82 0.1%> a
Weibull MoM 2 15.6883 13.82 0.1%> a

Lognormal 2 278.7662 13.82 0.1%> a
Normal 2 16.1645 13.82 0.1%> a

Rayleigh 3 234.5195 16.27 0.1%> a
Rayleigh-y MLE 3 527.5065 16.27 0.1%> a
Rayleigh-y MoM 3 484.2597 16.27 0.1%> a

Rayleigh+1 3 118.2857 16.27 0.1%> a
Beta MLE 1800 121 2 24.3306 13.82 0.1%> a
Beta MoM 2 8.7107 9.210 2.5%> a >1%

Weibull MLE 2 16.2314 13.82 0.1%> a
Weibull MoM 2 8.2975 9.210 2.5%> a >1%

Lognormal 2 188.5950 13.82 0.1%> a
Normal 2 8.8760 9.210 2.5%> a >1%

Rayleigh 3 50.1983 16.27 0.1%> a
Rayleigh-y MLE 3 211.5207 16.27 0.1%> a
Rayleigh-y MoM 3 211.5207 16.27 0.1%> a

Rayleigh+1 3 20.6116 16.27 0.1%> a
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Appendix B. ASPECT RCS Modeling Program

This appendix presents the APECT RCS modeling programn along with the 'new-

ton','bmle','chi', and 'interp' subroutines. The ASPECT MATLAB code inputs a 2-

dimensional array and determines the optimum pdf model.

%ASPECT RCS Modeling Program for i-l:data

if iio-iihi

C=O; 2O(i)=O;

while c-=l end

clear if ii=lo&ii=hj

zsniapot('lnput number of file to be used: 1=stm, j=j+2;

2=missilelgo, 3=wid, 4=missile'); SOWi-60);

if Zw=l 0 *1)

load sttm if &Om(j)==O

zwsttm; somn(j)=10,(.6)j

elseif z==2 elseif som(j).=I

load missilelSO 5som(j )=110(.8);

a=missilel80; end

elseif z==3 usom(j )= 1-sm(j);

load wid s0ml(j)=s0m(j),2;

z=wid; s~m4(j =s0mWj )4;

elseif z-=4 somgIOj)=s0m(j,, (Ilmag);
load missile somg2(j)=nsom(j)'(I/mag);

z=muissile; end

and if ijlo-iihi

k.0; SOu(i)=O;

t=input('Input number of separate sections to end

be included in full-range data. if i 4,=lo&ii=hi

You will be prompted to input the beginning Y=Y+1;

and ending sample of each section.') sou(i)=$(i);

for *=I: 9 soum(y)=S(i);

beginl=input('lnput beginning length sample') end

beginw=inpa t('Input beginning width sample') end

endl=input('lnput ending length sample') Gl=prod(somgI)% for beta mle alpha

endw=input('[npu% ending width sample') G2=prod(s0mg2)Ps for beta mie beta

for i=beginl:endl s00=0O+10'(4);

for j=beginw~endw

kwh+I; %MOMENT GENERATION

ZIWk-zi00;

end mn=mean(som)%sample mean

end m2=mean(somI)%sample second moment

end m4=mean(s~m4)%sample 49h moment

message='Data is now linearized. Window will M2=(std(sOm))*2% sample variance

be a single row table with length equal to var=m2-m'2% sample variance

aspect length multiplied by aspect width.' d=m'2/m2% for weibull mom interp

ii =sl'; edetmedian( a~m)%sample median

s=(zl.min(ai ))/&bs( max(a ).mi n( zI));

datahk for i-lo:his lognormal Parameter est

j .0; Imean(i)=lo$(*0l(i));

Y=O; end

lo~input('lnput beginning window sample') lmean-#um(lmean)/mag % log mean

hi-input(lInput ending window sample') for i-lo~lui

mag-hi.lo+lIla~ (o~~~ )lna 2
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end pause;

lvar=sum(lvar)/mag %s log variance plot(x,W);

WMLEP=[x' W'];

%BETA, WEIBULL, AND RAYLEIGH save WMLEP~dat WMLEP /ascii;

PARAMETER DETERMINATION WMOMP=[X' W'];

save WMoMP.dat WMoMP /ascii;

rI=(3*m2/4) (O.S)% Rayleigh+l parameter pause;

r=(m2/2)'(O.S)% Rayleigh parameter %ehold on;

rymle=r% Rayleigh-y=x 2 mie parameter plot(x,L);

rymem=(m2/S)'(O.25)% Ry mom parameter LognormalIP=(x' L'];

&=m*(m-m2)/(var)%a beta, estimate using method of moment& save LognormalP.dat LognormaiP /aseii;

b=(I-xn)(m-m2)/(var)%b beta mom pause;

interp Vs Determine Weibull MoM Parameters %hold on;

k~input('If Weibull mie is desired press 1, if mom press RETURN'); plot(x,B);

if k==] %title('Beta MLE pdf: 0 deg');

newton %s Determine Weibull MLE parameters BMoMP=!z' B'J;

end save BMoMP.dat BMoMP /ascii;

kl=input('Jf Beta mle is desired press 1, if mom press RETURN'); BMLEP=[x' B'];

if kl==1 save BMLEP.dat BMLEP /ascii;pause;

bmle %s Determine Beta MLE parameters %shold on;

vat= (gamma(&+b)(asaa*mab)V beta, plot(x,N);

end NormalP=[x' N'];

save Norms.IP.dat NorgnatP /ascii;

% PDP' FORMATION pause;

for i=1:200 %hold on;

x(i)s'i1200; plot( x,)

if B(i)==inf save RayleighP.dat RayleighP /ascii;

B(i)=B(i.I)*4; pause;

end %hold on;

R(i)=2
5
(x(i)/m2)*exp(-(x(i)'2)/(ni2)); %hold on;

Rymle(i)=( I/(2o(rymle'2)))*exp(.(x(i)*2)/(2*(rymle'2))); RayleighyP=[n' Rymle'];

Rymom(i)=(l /(2
5

(rymom 2)))*exp(-(X(i) 2)/(2*(rymom*2))); save RayleighyP.dat RayleighyP /ascii;

RI(i)=(9*x(i)'3/(2'(rI )'4))*exp((.3*x(i)'2)I(2*(rl)*2)); passe;

L(i)=((x(i)nsqrt(lvar)*(2*pi)'(1/2))-(.1))'exp(.(Iog(x(i)) plot(x,Rymom);

.Imean) (2)/(2*lvar)); %hold on;

N(i)=((1J(2*pi~var))' (1)2))*%xp(-((x(i)-m)'2)/(2'var)); RayleigliyoP=[x' Rymom'];

end save RayleighyoP~dat RayleighyoP /ascii;

pause;

hold off; %shold on;

%hold on; plot(x,RI);

i=0.025:0.05:0.975; RayleighlP=(x' RI J;
[Data, u]=hist(s~wm,i); save RayleighlP.dat RayteighiP /ascii;

hist(sOum,i); pause;

for i=1r200 jBrnaX,iBj=man(B)

for j=1:20 [WrnaxiW]=max(W)

if (i/200)i= l0"j/200&(i/200) 4 10*(j.I )/200 [Lmax,iL]=max(L)

Data2(i)=Data(j); [Nmx,riNj=inaX(N)

end (Rmax,iRl=man(R)

if i=200 (Rymlemax,iRymle]:=max(Rymle)

Data2(i)=0; [Rymommax,iRyinomj=max(Rymom)

end [RlmaxjiRl]=max(Rl)

end

end %CDF Formation

plo1(x.D&Sa2);

DataP=(x' Da9a2'1; j0

save DataP.dat DataP /ascii; for i=1:200

B-2



x(i)=i/200; %print;

SP~i)=O; ayleigbyC=uXs RYMlePI');

for j=I: mag save RayleighyC.dat RayleighyC Jascii;

if s~um(j)==O&i==1 pause;

SP(i)=&P(i)+l; plot(a,sPl,x,RymomnPl);

end title('ftayleigh-y mom cdt: 0 deg');

if x(i)L(sOuru(j ). /(400))&x(i);=(sOum(j)+l/(400)) %print;

sP~isP~i+1;Rayleighy*C=Ix' RymomPi');

end save RayleighyoC.dat RayleighyoC /ascii;

end pause;

end plot(x,*Pl,x,LPI);

for i=1:200 title('Lognorrmal cdt: 0 deg');

if i==1 %print;

SPl(i)=SP(i); LognormalCs=[x' LPl'I;

BPI(i)o=B(i); save LognormaIC~dat LognornsalC Iaacii;

WPl(i)=W(i); pause;

RymleP1(i)=Rymlt(i); title('Normal cdf: 0 deg');

RymomPl(i).sRymom(i); %print;

RIPI(i)ssRi(i); NormalC=[x' NPI'j;

LPI(i)ozL(i); save NormalC.dat NormaIC /ascii;

NPI(i)ýN(i); pause;

else plot( x,sP l. ,BP 1);

sPI(i)=6P(i)+sPI(i-l); title( 'Beta MoM cdt: 0 deg');

WPI(i)=W(i)+WP1(i-l); save BMoMC.dat BMoMC /ascii;

RymleFl(i)=Rysnle(i)+Rymlepl(i-l); save BMLEC~dat BMLEC /ascii;Ysprint;

RymomPl(i ).Rymsom(i)+RymomP1(i.1); pause;

RIPI(i)=fl.(i)+RIPI(i-l); plOt(a,SPl,a,WPI);

LPI(i)ccL(i)+LPI(i-1); title('Weibull MoM cdt: 0 dleg');

NPI(i)ssN(i)+NPI(i-I); WMQMC=[x' WP1'];

end save W~soMC.dat WMoMC lascii;

end WMLEC=Ia' WPl'J;

8PI =sPl/max(sPl); save WMLFEC.dat WMLEC /ascii;

BPI=BPI/rnax(BPI); DataC=(x' sPI'];

WPI.WP1/maa(WPI); save DataC.dat DataC /ascii;

RPI=RPlImax(RPI); %sprint;

RysnlePlssfymlePl/maa(RysolePl); pause;

RymomPl=RymomPljmax(IRymomPl);

RlPI=RIP1Imax(RIPI); %Goodness-Of-Fit

LP I =LPI1/max(LP 1);

NP1= NPI1 max(NP 1); for i=1:200

gfb(i)=abs(sPl(i)-BPI(i));

Plot(XasP lx .RP I); gfw(i)=&bs(sPl(i)-WPI(i));

title('Rayleigh cdf: 0 deg'); gfr(i)=abs(sPI(i )-RPI(i));

save RayleighC.dat RayleighC /ascii; gfrymle(i )aabs(sPI(i).RymlePI(i));

%print;gfrymom(i)=abs(sPl(i)-RysnomPI(a));

pause; gfl(i)=abs(sPl(i).LPI(i));

plot(x ,*P I ,,RIP 1); gfn(,)=abS(sPI(i).NPI(i));

title('Rayleigh+l cdf: 0 deg'); end

%print;

RayleighICasjx' FLIPI'; % Kolmoglowev Test Statistic

save flayleighIC.dat RayltighIC /ascii;

pause; kgfb~max(gfh)

plot( x,sPI,x,RynsIePI); kgfw=max(gfw)

title('Rayleigh.y mle cdt: 0 deg'); kgfrmrax(gfr)
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kgfrl =max(gfrl)

kgfrymle. matc(gfry mle) %INTERP: Weibull Mold Parameter Formation

kgfry mom= max(gfry mom)

kgfl=matt(gfl)

kgfn=mnax(gfn) load tablewlimat

for i=i 100

pdf=min(kgfb,kgfw); difr(i)=d-tablewl(i);

pdfurmin(pdf,kgfr); end

pdf=min( pdf~kgfrl); k0O;

pdf=min(pdf,kgfrymie); for i=2:100

pdf=min(pdf,kgfrymomr); if diff(i);=O

pdf=min(pdf,kgfl); k=k+l;

pdf~min(pdf,kgfn); diffn(k)=diff(i);

if pdf==kgfb end

message='Beta is the optimum pdf, alpha=' end

a (o,pI=mia(&bs(dilfn));

message='beta=' y
2

=(p.1)/1
00

;

b yl=(P)/i00;

elseif pdf==kgfw cl~tablewl(p);

message='Wei bul I is the optimum pdf, alpha=' jc2=tablewI~p+l);

&I y=(x2-d)*yl/(x2-xl)+(d.xl)*y2/(,c2-xl).

message='beta=' ^111mo1=1/y

be bemom=mn/gamma(l+y)

elseif pdf=kgfr *l=&lmom

message ='Rayleigh is the optimum pdf, alpha=' be=bemom

(m2/2)'0.5

elseif pdf==kgfrl

message='O n e-Domi nant- PlIua.Rayleigh is the optimum pdf, %NEWTON: Weibull MLE Parameter Formation

alpha='rl

elseif pdf==kgfrymle j =0;

message='IRayleigh- y mie is the optimum pdf, alpha-'

rymle almle=input('lnput beginning iteration (aI suggested)')

elsei~f pdf==kgfrymom for i=lo:hi

message ='Raylci gh- y mom is the optimum pdf, alpha=' j=j+l;

rymom snom(j)=s(i)+10-(.8);

elseif pdf==kgfi lnsnnO(j )=log(snom(j));

message='Logrormal is the optimum pdf, sigma=' snnl(j)=snom(i);

sqrt(lvar) snO2(j)=1.snom(j);

message='mu=' end

Imean sttm2=sum(litsn~l);

elseif pdf==kgfn suml=1;

message='Normat is the optimum pdf, sigma=' sstm3=1;

var j=0,

message='Mu=' while (sum1/sum3-l/almle)-=sum2/mag

m for i=t;mag

end lnmnto(i)=(SuOM(i) almle)*Iog(snom(i));

message='Enter RETURN for Chi-Square GOF' snoeo(i)=snom(i)a&lmle;

pause; lnsnn2(i)=(snom(i )'amle)*(Iog(snom(i )))'2;

end

% Chi-Square Goodness of Fit svml=snm(Insn0);

chi snm3z=sum(sn~co);

sum4=sum(lnsnO2);

c=input('Enter I to quit, enter another number to continue');

if C==[] almnle=almle+(sum2/mag+1/almle.(suml /sum3))/

C=0; ((1 /almle) 2+(nnm3*sum4-(Saml )*2)/(sum3V*2)
end bemle=(num3/mag)'( 1/amle)

end j j +1;
if j==20
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break; end

end end

end gad

al=almle if betat(v(u),2)iG2a

be=bemle G2xl1= betat(v(u ). 1.2);

G2x12.betat(v(u),2);

&I I =beat(v(%)-.13);

%BMLE: Beta MLE Parameter Formation al2=betat(v(a),3);

bll1= bttat( v( u). 1,4);

load betat~mat; bl2=betat(v(u),4);

if G1==G2&Gl==O end

&=O it betat(h(k),2)jG2a

b=O G2x2l~betat(h(k)-1 .2);

end G2x22=betat(k(k),2);

if GlG2 a21=betat(h(k)-1 .3);

Gla=G2; a22=betat(h(k),3);

G2a=G1; b21 =betat( h(k)-l,4);

b22=betat(h(k),4);

elseif Gli=G2&G2-=O xl=G2xll;

Gla=G1; x2=G2xl2;

G2a=G2; x=G2a;

end yl=all;

if G2-=O y2=a12;

for i=2:122 y=(x2-x)*y1/(x2.xl)+(x-x )*y2/(x2.xl);

if Glai=betat(i,1)&GIaLbetat(i-1,1) al=y

Glxl=betat(i-1.1); yl~bll;

G 1x2= betat( i .); y2=b12;

end y=(x2.x)*y1I(x2-xl)+(x.xl)*y2/(x2.xl);

it Gla==O bi =y

Glxl=0.O2; xl=G2221;

Glx2=O.05; x2=G2x22;

end yI =a21;

end y
2

=&22;

U=O; y=(x-x 1)*y2/(x2-x 1)-(x. x2)*y I/(,c2-n );

k=0; a2=y

for i=2:122 yl =b21;

if betat(i,1)=Glxl y2=b22;

u1u+1; n(-a 1)wy2/(x2-l.z1)(n- n2)*y1/(x2.x 1);

v(u)=i; b2=y

if G2ainebetat(i,2)&f32aibetat(i.1,2) xl=Glxl;

G2xll~betal(i.1,2); K2=Glx2;

G2xl2=betat(i.2); x=Gla;

al 1=betat(i.1,3); yl=aI;

a12=betat(i,3); y
2

=&2;

bI 1=betat(i-1,4); y=(x2.x)*yl/(x2.E1)+(nx l)*y2/(x2.xl);

b1 2= betat(i .4); A= y

end yl~bI;

end y2=b2;

if betat(i,1)-Glx2 =(x2-x)*y1/(x2.xl)+(x.x1 )*y2/(x2.xl);

k~k+i; b=y

h(k)=i; elseif Gla==O

if G2a&e~betat(i,2)&G2ai=betat(i.1 .2) xl=G2xl 1;

G2x21=betat(i.1,2); x2=G2x12;

G2x22=belat(i .2); x=G2&;

&21=betat(i- 1,3); yI=all;

a22= beta&(i,3); y2.&12;

b2l=betae(i.l,4); y=(x2.x)*y1/(x2.il)+(xxl )*y2/(x2-xI);

b22=be9&S(i,4); al=y

B-5



yl~bll; end

y2=b12; if GlZG2

y=(x2-x)*yl/(x2-x1)+(xr-x1)*y2/(x2-xl); bb=&;

bl=y aa=b;

xI=G2x2I; b=bb

x2=G2x22; &a

y 1=&21; end

y2=&22; end

y=(x,2-x )*y /( x
2

-K1 )+( x-x )*y2/( x2- xl);

a2=y

yl=b21; %CHL Determine Chi-Squsare Goodness-of-Fit

y2=b22;

y=(x2-x)*y11(x2-ul)+(x-xl )y21(x2-xl); if magz= 1OT&mgjI5

b2=y for i=1:200

xl=Glxl; bc(i )=abs(HP 1(i)-OS5);

x2=Glx2; ec(i)=abs( WP 1(i)-O.5);

yl=al; rymlec(i)=abs(RymlePl(i)-O.5);

y2=&2; rymomc(i)=abs(RymomPl(i)-O.5);

y=(x2-x)*yl/(x2.xl)-(Xl.x)*y2/(x2-xl); rlc(i)=abs(RIPI(i)-O.5);

a=y Ic(i)=&bs(LPI(i)-.5.);

yl~bl; nc(i)=abs( NP1(i )-O.5);

y2=b2; end

b=y [wc,samw]=min(wc);

else [rc,samr]=min(rc);

xl=G2xll; [rym~ec,samrymIeI=min(rymIec);

x2=G2xl2; [rymomc,samry morn)=mi n(rysnomc);

x=G2a; (rlc~samrlfrmin(rlc);

y1=A11; [1c,saml]=min(Ic);

y2=&12; [nc,samu]=min(nc);

y=(x2-x)*yl1(x2.xl)+(x-xl)*y21(x2.xl); NBI=O;

a1=y NB2=0;

yl=bll; NW I O;

y2=bl2; NW2=0;

y=(x2-x)*y1/(x2-xl)+(x-xl)*y2/(x2.xl); NRI=O;

bl~y NR2=0;

xl=G2x2l; NRymlIe=0;

x2=G2x22; NRymle2=O;

yl=a21; Nftymotnl=O;

y2=&22;NRymom2=0;

y=(x2-x)*yl/(x2-zl)+(x-xl)'y2/(x2-xi); NRI 1=0;

&2=y NR12=0;

yl=b2l; NL10O;

y2=022; NL2=0;

y=(x2-x)*yl1(x2-zl)+(x-x )*y2/(x2.xl); NNI=O;

b2=y NN2=0;

xl=Glxl; sOunl =sort(soum);

x2=Glx2; for i1l~mag

X=GIA; if sauml(i)i=samb/200

yI =a1; NBI=NBI+1;

y2=&2; end

y.(x2-x)*y11(x2-zl)+(x-x )*y2/(x2-xl); if jOumI(i),samb/200

A=y NB2=NB2+1;

yl=bl; end

y2-b2; if sOuml(i)i-sanibI200

y=(x2-x)*yl/(x2-ul)+(x-xl )y2/(x2-xi); NW1=NWI +1;

b=y end

B-6



if sOuml(i)isamw/200 TSLI =((NL1.0.5*mag) 2)I(O.5mag);

NW2=NW2+ 1; TSL2=((NL2.0.5*mag)*2)/(O.5~mag);

end TSL=TSLI+TSL2

if sounm1(i);=aamr/2OO TSNI=(LNN1-O.5mag)'2)1(0.5*mg);

NRI=NRI+l; TSN2=((NN2-.05mag)*2)/(O.Smag);

end S=SITN

if sOurnl(i)jsaxnr/2OO end

NR2=NR2+1; %pause;

end if 15;=mag&rmag;2O

if sOum1(i)j=samrymle/2OO for i =1: 200

NRymnleI=NRymleI+l; bc l(i )=abs(B PI(i)- 1/3);

end bc2(i )=bs( B PtCi)-2/3);

if sOuml(ihjsamrymnleI200 wcl(i)=&b&(WPI(i)i1/3);

NRymle2=NRymle2+1; wc2(i )=abs( WP (i )-2/3);

end rcl (i )=abs(RPI (i)- 1)3);

if sOuin1(i)i=samrymom/2OO rc2(i)=abs(RPI(i)-2/3);

NRymoinl=Nftymoml +1; rymnomcl(i)=abs(RymomPI(i)-1/3);

end rymornc2(i )=&bs(RymnomPI(i )-2/3);

if sOuni1(i)isamrymom/2OO rymlecl(i)=&bs(RymlePl(i)-1/3);

Nftymom2=Nftymom2+1; rymlec2(i)=:sbs(RymlePI(i)-2/3);

end r 1c1(i )=&bs( RI P(i)-1/3);

if sOum1(i)j=sarmrl/2OO rlc2(i)=&b&(RIPI(i)-2j3);

NRI 1=NR11+l; Ic I( i)=&b.(LP1 ( i )-/3);

end lc2(i )=abs(LP1( i)-2/3);

if sOumli(i)isamrI/200 nc I( i)=abs( NP1(i)- 1/3);

NR12=NR12+1; nc2( i )=&b&NP I( i)-/

end end

if soumm(i)jumsamI/2OO [bcl,&ambl]=min(bcl);

NLI=NLI+I; (wcl,namnwlj~min(wcl);

end Crc I,samrl]=:min( rc );

if soumI(i)isamI/20O (rymleci .samrymlelj~min(rymlecl);

NL2=NL2+1; Irymomcl~samrymomli=main(rymomcl);

end (rid *samrl I)=miU(rlcl);

if sOuml(i)j=samnI200 (Ilet,samIIJ=mi"(Ic]);

NNINNI+t; inc 1,&amn 11=:min( nc );

end [bc2,satnb2]=rmin(bc2);

if sOuml(i)isamn/200 fwc2,samw2i=min(wc2);

NN2=NN2+1; [rc2,samr2]:=min( rc2);

end (rymomc2.samrymorn2]=niin( rymomc2);

end (rymlec2,samrymlie2j'nmin(rymlec2):

TSBI =((NBI-0.5ma 5)'2)/(O.S5mag); (rlc2,samrI2j=min(rlc2);

TSB2=(lNW2-O.t'mag) 2)g'(0.&mag); (Ic2,s&mt2j=min(Ic2);

TSB.TSBI +TSB2 fnc2..anmn2J= min( nc2);

TSWI=((WI-.0.Smag)'2)j(O.5Smag); N4I310;

TSW2=(( NW2.O.5*mag) 2)I(0.5*mag); NB2=0;

TSW=TSWI+TSW2 NB3=0;

TSRI =(( NRI-O.5Smag)'2)j(O.Stmg); NWI=O;

TSR2=(( NR2.O.5'mag) 2)/(O.5*mag); NW2=0;

TSR=TSRI +TSR2 NW3.0;

TSRymleI=((NRymiel-O.53mag)'2)/(O.S~mag)i NRI=O;

TSRymle2=((NRymle2-O.5*mag) 2)/(O.Snrag); NR2.0;

TSRymie.TSRymlel+TSRymie2 NR3=0;

TSRymom1=((Nt4ymom1-O.5
0

mag) 2)/(O.5*mag); NRYI*1~c=O;

TSRymom2=((NRymon2-0.5*m.%g)'2)/(O ~mg;NRywde2z:O;
TSRymom=uTSftymomI+TSRymom2 NRyrnl*eSO;

TSRII=((NRII-O.5*mag)'2)/(O.S~mag); NRymonit-O;

TSRI2.((NR12-O.5'mag)2)/(O.5~m&g); NRymom2.0;

TSRI TSRI I+TSRI2 NRymom3.0;
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N R II 0; end

NR12=0; if *Oumi(i)~ismrlj20O&sOumi(i)i=sainrI2/200

NR13=O; NR12=NR12+1;

NLI=O; end

NL2=O; it *OumI(i)isanirI2/2OO

NL3e=0; NR13=NR13+1;

NNI=O; end

NN2=0; if &OumI(i)i=jamllj2G0

NN3=O; NLi=NL1+i;

#Oumi =sort(sOum): end

for i=]:mag if sOuml(i),samll/2OO1zsOuml(i);=samI2/2OO

if $OUMI(i)i=.aMbl/20O NL2=NL2+1;

NBI=NB1+I; end

end if sOumI(i)is~ml2/200

if sOuml(i),.ambib/20O&.Ouml(i)i=samb2I2O0 NL3=NL3+2;

NB2=NB2+1; end

end if sOumI(i)i=samn 11200

if s~uml(i)isanib2/2O0 NNI=NNI+1;

NB3=NB3+1; end

end if soumi(i)isamnl/200&s0uml(i)i=samn2/200

if sOumIl(i)i=SamwII200 NN2=NN2+1,

N WI =NWI + ; end

end if sOumnl(i)isamn2/200

if sOuml(i),samwi/2O0&sOumi(i)i=samw2/20O NN3=NN3+ I

NW2=NW2+1; end

end end

if *OumI(i)Z,.&m.2/200 TSBI=((NBI.(1/3)'mag)'2)I(( I/3)'mag);

N W3=N W3+ I; TSB2=((NB2.(113)'mag)'2)I(( 1/3)'mag);

end TSB3=((NB3.(1/3)*mag)'2)/(( I/3)'mag);

if #Ounil(i );=smrlI200 TSB=TSBI +TSB2 +TSB3

NRI=NRI+I; TSW1=((NWI.(I /3)*mag) 2)I((1I/3)'mag);

end TSW2=((NW2.(2 /3)nuag) 2)/(( I/3)*mag);

if s~umI(i)isamrI f200&sOumI(i)i=sunr2/200 TSW3=((NW3.(113)'magr 2)/(( l/3)'mag);

NR2=NR2+I; TSW=TSWi +TSW2+TSW3

end TSRl-((NRI.( I/3)nmagY 2)/(( 1/3)*mag);

if sOuml(i )isamr2/200 TSR2.((NR2-(I1/3)miag)*2)I(( 1/3)'mag);

NR3=NR3+1; TSR3=((NR3-( 1/3)'mag)2)1(( I3)"mag);

end TSR-TSR1+TSR2+TSR3

if &OumI(i)i=.a~mryniteI/200 TSRymieI=((NRymte1.f(1/3)'mag) 2)I((1/3)'mag);

NftYMIeI =NfymleI +1 TSRymle2=((NRymle2.(I1/3)'mas)'2)/(( 113)'mag);

end TSRymie3=((NRymle3.(I1/3)'mag 2)J((I1/3)'mag);

if &OumI(i )isamrymIeI/20O&.0ummi(i);=camryrniI2/2O0 TSRymle=TSRymnleI+TSRymIe2+TSRymIe3

NRy2-Nfty2+I; T Sty mom I =((N flymom I.( I/ 3)mag) 2)j ((I/ /3)mag);

end TS Ry mom2 =((N Ry mom 2- (1I/3)'mag)'2)/((I/ 3)'mag);

if s~um2l(i)ýsamrrymle21200 TSftymom3=(( NRymom3-(1I/3)*mag) 2)P((I1/3)'mag);

NRyinle3.NRymle3+1I TSftyrom=TSRymnomI +TSRymomn2+TSRyrnom3

end TSRI I=((NRI I.( 13)'mag) 2)/(( I/3)'mag);

if &0umI(i)=.#amrymomI /200 TSR12-((NR12-( 1/3)'mag)*2)I((1I/3)'mag);

NRymomi.NRymomI + ; TSR13=((NR13.f I/3)"mag) 2)/(( I/3),nag);

end TSRI-TSRII+TSR]2+TSR113

if sOuml(i)isamrymomI/200&.sOumI(i)im.amrymom2/200 TSLI.(( NLI.( I/3),nag) 2)/((I1/3)*mag);

Nftymom2-NRyvnom2+1; TSL2=((NL2.( 1/3)'mag) 2)/((I1/3)*mag);

end TSL3-((NL3.( I/3)'mag)'2)/(( 2/3)*mag);

if s~vml(i)iaaanrynuom2/200 TSL.TSLI+TSL2+TSL3

NRymom3=Nftymam3+1; TSNI=((NNI1.(1/3)"mag) 2)/(( I/3)lmag);

end TSN2.((NN2.(1/3)uFnagV*2)/(( 1/3)*mag);

if sOvml(i).i.anur2 1/200 TSN3-((NN3.(1/3)'iag) 2)/((I13)lmag);

NftII-NftII+I; TSN=TSNi4TSN2+TSN3
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end NW3=0;
if 20;=m~g&n.&gi2S NW4=0;

for i=1ý200 NR1IrO;
bcl(i)=&bs( BP I(iY)O.25), NR2=O;
bc2(i)-&bs(BPI(i),O.5); NR3=O;
bc3(i)=&b&(BP1(i).O 75); NFt4=O;
wcl(i)&b*( WPI(i)O .25); NRyt,.lIel=O;
.ec2(i)=&b&( WPI(i)-o 5); NRymle2=0;
wc3(i )=abs( WPI(a )-O.T5); NRymle3O0;
rcli).fab*( RPI(i)-0 25); Nftymle4n=O;
rc2(i).abs(RPI(i)0.5); NRyrmomXO;

rc3(i)=abs(RPI(i)-O.75); NRymom2=0;
rymlecl(i)=~ab.(RymjePI(i).0 25); Nftymom3=0;
rymlec2(i)=abstlRymlePI(i)-.os); N~tymom4O0;
rymlec3(i )=abs( RymIePI(i)0.O.7$); NRI 10;
rymomcl(i)=abs( RymomPIifi)-O.25); NR12=O;
rymomc2(i)=abs( Ryrnon.P I~i )-O5), NR13=0;
rymomc3(i)=abs( Ry mom P I(i)-O. 75); NR14=0;
rlcI(i)=abt(RIPI(i)0 .25); NLI.0;
rlc2(j )=abs( RIP 1(j)-O.5); NL2=0;
rlc3(i)=&bs(RIPI(j)..75); NL3=0;

IcI~frab(LPIi).o25)NL4=0;

1c2(ifrabs( LPI(i ).O.5), NN1 =0;
1C3(i)=ab&(LPI(i).O.75); NN2=0;
ncl(i)=&bs(NPI(i).0,25); NN3=O;
nc2(i).&bs(NPI(i).O.5); NN4=0;
nc3(i)=oabs(NPI(i)-.07b); SOuml=sort(AOum);

end for i. I: Mag
[bcl.,earblj=min( bcI), if sOuml(i)j=sambI/200
[wc1.samwlfrmiv(wcl); NBI=NBI+I;
Irci .eamrIJ=mtn(rcl); end
(rymliec I .ALMFrymell=min( rymiecl); it 'Ounil(i).isnbi I200&soum1i(i);=samb'21200
[rYmomcl .samrymom1l~min( rymomcl); NB2=NB2+I;

Iki ,saml)=)minor I), if *Ouml (i ),samb2I200&soumi(is),=samb3/200
Incl .samnll=min( nc I); NB3=NB3-,1;
[bc2,samb2Je~min( bc2); end
[wc2.samw21,~min( wc2), if SOuml(i)jsamb3/200

1uc2..amr2j= min( rc2); NB4=NB4+1;
(rymlec2,samrymnle2Imtint(vytnec2); end
Irymomc2,samrymom2j=min(iymomc2); if SOuml(i)j=AamwI/2G0

(r 1c2.sakr 121=rmin( t Ic2); NWI=NW1+I;
11c2,saml2]= min(Ic 2), end
jnc2,samn2j~min(nc2); if 40"wm(i)isamwiI200&.oum1(il....4am-2/2O

(bc3.#&mb3= mi n( bc3); NW2-NW2+1;
(wc3,samw3)~mjnf c3); end
[rc3,samr3fr min(rc3); if eOuml(i),8amnw2/200&.OumI(i)..,samw3/200
Irymlec3.samr~yinie3lermin(rymniec3); NW3=NW3+1;
[rymolnc3,samnrymomn3)min(rymomc3); end
(rlc3.samrl3j-min( rlc3); if sONmI(i)jsamw3/2OO
11c3.eamI3Jumin(1c3); NW4-NW4+1;
Inc3,.samnafr man( nc3); end
N81.0; it .Oum1i(i)i-sanatt/200
N02-0; NRI.NRI+I;
N03-0; end
N94-0; if £Oum1(i)i.auirI /200&.@Ovml( i)i=eami2/2O0
NW 1.0; NR2-MR2+1;
NW2n.0; end
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if sauml(i)jsamr2/200&s(Juml(i)i=samr3/200 NN2=NN2+1;

Nft3=NR3+1; end

end if s~um1(i)Zsamnt2/200&sOum1(i)i~somu3/2O0

if s~um1(i)Lsamr3/2G0 NN3=NN3+1;

NR4= NR4+ 1; end

end if sOuml(i)Zsmain3/200

it SOum1(i)j=saxnrymlelJ2OO NN4=NN4+i;

NRymlel=NRynilel+1; end

end end

if s~uml(i) 4samrymle] /20O&s~um1(i)j=sarnrymle2/2O0 TSB1 ((NBI-O.25*mag) 2)/(0.25*mag);

N~fyznle2=NRymle2+1; TSB2=((NB2.O.25*mag)'2)/(0.25*iag);

end TSB3=((NB3.0.25*mag) 2)I(0.25*iag);

if eOuml(i) 4samrymle2/200&s~uml(i)i~sarnrymle3/200 TSB4=((NB4-0.25*mag)'2)/(O.25*mag);

NRyinle3=NI~ymle3+1; TSB=TSBI+TSB2+TSB3+TSB4

end TSWI=((NW1-0.25*mag) -2)/(O.25*msg);

if sOunil(i),sainrymie3/200 TSW2=((NW2.O.25*mag)"2)/(O.25*mag);

NRymle4=NRymle4+ 1; TSW3=((NW3.0.25'mag)-2)1(0.25*mag);

end TSW4=((NW4-0.25*mag)-2)/(0.25'mag);

if s~um1l(i)j=sanirynoml/200 TSW=TSWI +TSW2+TSW3+TSWI

?JRymoml=NRymoml+ 1; TSRI =((NRI.0.25*mag)'2)/(0.25*nag);

end TSR2=((NR2.0.25*mag) 2)/(0.26*mag);

if s~um1(i)isamrymoml/200&so0um1(i)i=samrymom2/2O0 TSR3=((NR3.0.25*mag)'2)/(0.25*mag);

NRyinom2=Nayunom2+ 1; TSR4=((NR4-O.25*mag)'2)/(0.25*mag);

end TSR=TSRI+TSR2+TSR3+TSR4

if sOum1(i)isarmrymom2/200&s~um1(i)i=samrymom3/200 TSRymlel=((NRymiel-0.25'mag)'2)/(O.25aiag);

N Rymom3=NRymom3+1; TSRymle2=((NRymle2-0.25*mag)'2)1(0.25nimag);

end TSRymle3=((NRymle3-0.25*mag)'2)/(0.26;mag);

if sOurnl(i)jsamrymom3/200 TSRymie4=((NRymle4-O.25*mag)2)/(O.2o~mag);

NRymom4=NRymomn4+1; TSRyinle=TSRynilel+TSRymie2+TSRyinie3+TSftymle4

end TSRymom1=((Nflymom1-0.25nmag) 2)I(O.25'mag);

if sOunil(i)i=samrl 11200 TSRymom2=((t4Rymom2-0.25*n~ag) 2)1(O.25*mag);

NRI=NRil+l; TSRymom3=((r4Rymoni3-O.25*mag) 2)I(0.25'mag);

end TSRymom4=((NRymom4-0.25*mag)'2)1(0.25mag);

if sOuml~i )Lsamr1 1/200&s~um1(i),=samr1r2/200 TS Ry mom=TS Fymom I+TSftymes2+TS Rymom3+ TSRymor4

NR12=NR12+1; TSRII=((NRII-0.25*mag)'2)/(O.25*mag);

end TSR12=((NR12.0.2S~mag)'2)/(0.25*mag);

if s~um1(i)zsamrlr2/2O0&s~und (i),=samrl3/200 TSR13=((NR13-0.25ernagY2)/(0.25*mag);

NR13=NR13+1; TSR14=((NR14.0.26*mag~)2)/(0.25*m&g);

end TSRI=TSRI 1+TSR12+TSft13+TSR14

if s~um1(i)i.samrl3/200 TSLI=((NLI-0.25*magE*2)/(0.25*mag);

NR14=NR14+1; TSL2=((NL2.0.25*mag)'2)/(0.25'mag);

end TSL3=((NL3-0.2S'mag)'2)/(O.2lnsag);

if sOuml(i )j=samI 1/200 TSL4=((NL4.0.25*mag)*2)/(O.25Smag);

NLI=NLI+1; TSLu=TSL1 +TSL2+TSL,3+TSL4

end TSNI=((NNI-0.25'mag) 2)/(0.25*m&5 );

if s~uml(i )isaml1/200&s~uml(i)i=saml2/200 TSN2=((NN2-0.25*mag)*2)/(O.25*mag);

NL2=NL2+1; TSN3=((NN3-0.25*mag)'2)/(O.25'nag);

end TSN4=((NN4.O.25'mag) 2)/(O.25'mag);

if sOumI( i)zsamI2/200&s0um 2(i);=sasnI3/200 TSN=TSNI +TSN2+TSN3+TSN4

NL3=NL3+1; end

end if magi=25

it sournl(i)isarnI3/200 IoT i=1ý2O0

NL4=NL4+1; bcl(i)=&bs(BPI(i}.O.2);

end bc2(i ).&bs( 0P (i )-0.4);

if s~um1(i)j=samn1/200 bc3(i)=&b&jEPI(i)-0.6);

end wc l(i)=&bs( WPI(i )-O.2);

if s~um1(i)Lsamn1/200&soum1(i);=samn2/200 wc2(i)=abs(WPI(i)-0.4);
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WC()&sWP(i- J);104,sarm 41 =uwn(nc4);

wc 4(i)= ab&(WP I(i )-O.S); NBi=o;

rc I(i) =abs(RP 1(i)-.O2); NB2=0;

rc2(i)=&bs(RPl(i)-0.4); NB3=0;

rc 3(i)= abs(RP 1(i)-G.6); NB4=0;

rc4(i). abs(RP I~i-) NHs=o;

ry mlec l(i)= abs(RyndeP l(i)-0.2); NWI=0;

ry mlec2(i)=&bs(ftyleP 1(i).".4); NW2=0;

ry mlec 3(i)= abs(ftyvmeP I(i)- 0.6); NW3=0;

rymlec4(i)=&bs(RymlePl(i)-0.8); f1W4=0;

ry momc I(i)= &bs(RymonoP I(i)-O. 2); NWS=0;

ry momc2(i)= abs(RymemP I(i)-0.4); NR1 =0;

rymomc3(i)=abs(Rym~mPl(i)-0.6); ?JR2=O;

ry mome4(i)= abs(RymomP 1(i YO.8); NR3=0;

r Ic l(i)=abs(R PIP(i)-0. 2); NR4=0;

ric 2(i)=ab*(R1 P (i)-0.4); NSO

r Ic3(i)=ab&(R IP 1(i)-0.6); NRymlel=0;

r Ic4(i)=&bs(R1 P I(i)-0.8); NRyude2=0;

Ic I(i)= abs(L P (i).0.2); NRymle3=0;

Ic2(i)= abs(LP I(i)-0.4); NRymle4=0;

Ic3(i) =abs(L P I(i)-".6); NRymleS=O;

lc4(i)= bs(LP I(i)-0.8); NRymoml=0;

nc l(i)= abs(NP 1(i YO.2); NRymom2=0;

nc2(i)=&bs(NPl(i).0.4); NJRymom3=0;

nc3(i)= abs(NP 1(i).O. 6); NRymom4=0;

nc4(i)=abs(NP 1(i).0. 8); NftynomS=0;

end NRI=O;
[bc l,sambl mi n(bc 1); NR12=0;

[WC 1'samw II-mi n(wcl); NR13=0;

[rcl,samrljxnin(rcl); NR14=0;

[rymlecl,samrymlelfrmin(rymlecl); NR15=0;

trymnoac 1,samnry monm11= min(rymomc 1); NLI=O;

[rlcl,samrl lJ=min(rlcl); NL2=0;

Inc l,samn1]=min(nc 1); NL4=0;

[bc2,samb2j =mi n(bc2); NLS=0;

fwc2,samw2]=min(wc2); NNI=O;

[rc2,samr2l =min (rc2); NN2=0;

iry~nIlc2,samrymle2j=min(rymlec2); NN3=0;

[rymome2,samrymom2]~min(rymomc2); NN4=0;

(rl c2,sarrl 21=min(rlc2); NN5=0;

[1c2,saml2frmin(lc2); soum1l~sors(soumn);

[nc2,samni21 =mi n(nc2); for i=l~mag

[bc3,samb3j~min(bc3); if sOuml(i);=sambl/200

fwc3,samw3j~min(wc3); NBI=NB1+1;

ETC3,samr31=mnin(rc3); end

(rymlec3,sarnrymle3]~min(rymlec3); if sOuml(i),sambl /200&souml(i );=samb2/200

[rymnomc3,samrymom3]~min(rymomc3); NB2=NB2+ 1;

[rle3,samrl3j~min(ric3); end

[1c3.samI3]=min(1c3); if sOurnl(i )isamb2/200&eOuml(i );=s&nib3/200

[nc3,samn3J~min(nc3); NB3=NB3+1;

[bc4,samb4]=~min(bc4); end

jwc4,&&mw4j~min(wc4)-, if &OumIl(m),samb3/200&sOumi(i);=samb4/2o0

[rc4,samr4I=min( rc4); NB4=NB4+1;

[rymlee4,samrymle4]rmiu(rymlec4); end

(rymomc4.samrymom4frmin(rymomc4); if sournl(i)isamb2/200

[r1 c4 ,samrl 4frmin(rle4); NB5=NB5+1;

11c4,jamI4j~min(1c4); end
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if souml(i)i~samwl/20O NRymoin5=Nftymom5-g.I;

NWI.NWi +1; end

end if s~uml(i),=samrll/200

if sOuini(i)inninwlI200&sOvunul(i)i=samw21200 NR1II=NRAI +1;

NW2ýNW2+1; end

end if sOmmI(i)Liainrll/20O&sOum1(i)i=samrl2/200

if souml(i),samw2f200&sOumin(i).~samw3/200 NR12=NR12+ I;

NW3.NW3+1; end

end if sOumln(i)&smr12I2OO&sOnmi~i)i=samrl3/200

if soum1(ihnaniw3/2OO&sOum1(i)i=samw4/2OO NR13=NR13+ I;

N W4=NW4 + ; end

end if sOuml(i)isamrl3/2OO&nOumiI(i)i=samrl4/200

if sOuml(i)Zsainw4J200 NR14=NR14+I;

NWS.NW5+1; end

end if sOurni(i)Lgamrl4/2OO

if souml(i)i=samrII200 NRIS=NRIS+l;

NRI=NR1+1; end

end if sOunml(i)i=saml 1/200

if soumi(i)LsamrI I200&&OumiI(i)*ninair2/2OO NLI =NLI +1;

NR2=NR2+1; end

end if sOuml(i)isamll/2OO&sOumin(i)i~samI2/2OO

if sOumi(i)isamr2/200&sOuml(l)i~samr3/2OO NL2=NL2+1;

NR3=NR3+1; end

end if sOurni(i),naml2/200&sOuml(i )i=samI3I200

if souml(i),namr3/200&sOuml(i).=samr4/200 NL=NL3+1;

NR4=NR4+1; end

end if nOuni1(i)isaamI3/2OO&sOumi(i)i=narnI4/2OO

if souml(i)jsanir4/200 NL4=NL4+1;

NR5=NRS+I; end

end if soumli(i)4,saniI4/2OO

if sOuml(i)i=~smryinlel/20O NLS=NLS+1;

NRymtel=NRyinfel+1; end

end if sOuinl(i)i=samnni/200

if sOumi(i)lsamrymielI2OO&sOuml(i)i~saunrymle2I2OO NNI=NNl+I;

NRymnle2=NRymie2+1; end

end if sOuml(i),samnl/2OO&sOuml(i)i=samn2/2OO

if soumin(i) 4 nanirymle2/200&nsOuml(i)i=sanrymine3l200 NN2=NN2+1;

NRyinle3=NRymle3+1; end

end if soumin(i)Lsamn2/20O&sOuml(i)i~samn3/2OO

if sOumi(i),samryunle3/200&souml(i)i=samrymle4I200 NN3=NN3+1;

NRymle4=NRymle4+1; end

end if sOunil(ihýs&inn3/200&sGiini(i)i~saynn4/200

if sOumi(i)Lsamrym~e4/20O NN4=NN4+1;

NRymlc5=NRynile5+1; end

end if sOuml(i)lsamn4/2OO

if sOumI(i);=samrymornII200 NNS=NNS+li

NRymoml=Nftyniol+l; end

end end

if sOunii(i)isamryinomi /200&sOumim(i)i=samrymom2/200 TSBI =(( NBI.O.2*mag) 2)/(O.2*mag);

NRymom2=Nftymom2+1; TSB2=((NB2-O.2'mag)-2)I(O.2unag);

end TSB3=((NB3-0.2'mag)-2)/(O.2emag);

if soum1(i)isamrymom2I200&.Ouml(i)i~samrymom3I200 TSB4=((NB4-.0.?mag) 2)I(O.2*mag);

NRymom3=NRymom3+1; TSB5=((NBI-O.2*mag)*2)/(O.2mrag);
end TSB=TSBI+TSB2+TSB34TSB4+TSBS

if sOumi(i) 4samrymom3/200&sOuml(i)i~samrymoin4/200 'rSW l=((NWl.O.2insg) 2)/(O.2*mag);

NRymon4=NRymom4+ i; TSW2=((NW2.O.2*mag) 2)/(O.2mag);

end TSW3=((NW3.O.2'mag) 2)1(O.2-mg);

if soiiml(i)isainrymom4/200 TSW4=((NW4-0.2*mag)'2)/(O.2,mag);
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TSWS=((NW5-O.2'mag)'2)/(O.2'mag); +TSRymorm4+TSRymom5

TSW=TSWI +TSW2+TSW3+TSW4+TSWS TSR1I I ((NRI11.O.2'mag)'2)/(0.2'mag);

TSRI=((NRI-O.2'mag)'2)/(O.2'mag); TSR12=((NR12-O.2*mag)2)/(0.2?mag);

TS R2=((N R2-0.2*mag) -2)/(0.2omas); TSR13.((NR13.O.2mag) *2)/(0.2*mag);

T S R3= ((N R3-0.2omag)'2) /(0.2'mg); TSRI 4=((N RI 4-O.2rag)'2)J (O.2*mag);

TS R4 =((N R4-O.2* mag)'2)/(0.2'mag); TSRI 5=((Nft15-0. 2mag)'2)/ (0.2mag);

TSR5=((NR5-O.2*mag)'2)/(0.2'mag); TSRI=TSRI I+TSR12+TSRI 3+TSRI 4+TSRI 5

TSR=TSRI+TSR2+TSR3+TSR4+TSRS TSLI=((NLI.O.2*mag).2)/(0.2*rmag);

TSRy mle I=((N Ry mlel -0.2mag)'2)1(0.2mag); TSL2=((NL2.O.2ma5 ) 2)/(O.2*niag);

'TSRymle2 =((N Ry mle2-O.2*ma3 ) 2)/(0.2mag); TSL3=((NL3.O.2*mag) 2)/(O.2*mag);

'TSRymie3=((N Rymle3-O.2*mag) * 2)/(O.2'mag); TSL4=((NL4-O.20mag) 2)/(.2*mag);

T SRynde4 =((N Ry mle4.O.2*mag) 2)I(O.2*mag); TSLS=((NLS-G.2*mag) *2)/(O.20mag);

TS Ry ml e=((N Ry mle5-O0.2'mag) 2)/(O.2*mag); TSL.TSLI+TSL2+TSL3+TSL4+TSL5

TSRymle=TSRymiel +TSRymle2+TSRymle3 TS N I((NN1.O.2*mag) 2)/(O.2*mag);

+TSRymle4+TSRymleb TSN 2=((NN2-.2*mag) 2)/(o -2*mag);

TS Rymoml = ((N Ry mom 1.O0.2*mag) ^2)/(O.2'mag); TSN3=((NN3-0.20mag) 2)/(O.2'mag);

TSRymorn2=((NRymnom2.O.2*mag) 2)1(0.2*mag); TSN4 =((NN4-O.2omag) 2)/(O.2*mag);,

TS Rymom3=((N Ry mom3.0.2o mag) 2) /(O.2mag); TSNS=((NNS-O.2*mag)'2)/(O.2mrag);

TSRymom4=((NRymoni4-O.2'mag)2)/(O.2*mag); TSN=TSNi+TSN2+TSN3+TSN4+TSN!S

TSRymomS=(( NRy momS.O.2*mag) ^2)/(O.2*mag); end

TSRymom=TSRymoml+TSRymom2+TSRymoxn3
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